Determination of parameters for lumped parameter models of the vocal folds using a finite-element method approach

M.P. de Vries*, H.K. Schutte, G.J. Verkerke

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

28 Citations (Scopus)

Abstract

To study the mechanical behavior of the vocal folds, lumped parameter models of the vocal folds have been developed in the past. Coupling with a model of the aerodynamics in the glottis provides the possibility of simulating glottal waves. A new method is presented to obtain values for the masses and springs of the lumped parameter models by using a finite-element method model of the vocal folds. This finite-element method model is based on geometry and material data from the literature, resulting in a model that describes the vocal fold in a realistic way. Requiring the dynamic behavior of the lumped parameter model of the vocal fold to be equal to the dynamic behavior of the finite-element method model of the vocal fold, parameter values are obtained that are purely based on dynamic considerations. Therefore, the behavior of the vocal folds is described in a realistic way by these parameters. These values are compared with the values used by previous authors and are implemented in lumped parameter models. Self-sustained oscillation is achieved with the new values for masses and springs.

Original languageEnglish
Pages (from-to)3620-3628
Number of pages9
JournalThe Journal of the Acoustical Society of America
Volume106
Issue number6
DOIs
Publication statusPublished - 29 Dec 1999
Externally publishedYes

Fingerprint

Dive into the research topics of 'Determination of parameters for lumped parameter models of the vocal folds using a finite-element method approach'. Together they form a unique fingerprint.

Cite this