Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

H. Nazeer, Duc Minh Nguyen, L.A. Woldering, Leon Abelmann, Augustinus J.H.M. Rijnders, Michael Curt Elwenspoek

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)
3 Downloads (Pure)


We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show that the Young’s modulus of PZT thin films deposited on silicon is dependent on the in-plane orientation, by using cantilevers oriented along the 1 1 0 and 1 0 0 silicon directions. Deposition of thin films on cantilevers affects their flexural rigidity and increases their mass, which results in a change in the resonance frequency. An analytical relation was developed to determine the effective Young’s modulus of the PZT thin films from the shift in the resonance frequency of the cantilevers, measured both before and after the deposition. In addition, the appropriate effective Young’s modulus valid for our cantilevers’ dimensions was used in the calculations that were determined by a combined analytical and finite-element (FE) simulations approach. We took extra care to eliminate the errors in the determination of the effective Young’s modulus of the PZT thin film, by accurately determining the dimensions of the cantilevers and by measuring many cantilevers of different lengths. Over-etching during the release of cantilevers from the handle wafer caused an undercut. Since this undercut cannot be avoided, the effective length was determined and used in the calculations. The Young’s modulus of PZT, deposited by pulsed laser deposition, was determined to be 103.0 GPa with a standard error of ± 1.4 GPa for the 1 1 0 crystal direction of silicon. For the 1 0 0 silicon direction, we measured 95.2 GPa with a standard error of ± 2.0 GPa.
Original languageUndefined
Pages (from-to)074008-074014
Number of pages7
JournalJournal of micromechanics and microengineering
Issue number7
Publication statusPublished - 22 Jun 2011


  • EWI-20279
  • TST-SMI: Formerly in EWI-SMI
  • METIS-279652
  • IR-77581
  • TST-uSPAM: micro Scanning Probe Array Memory

Cite this