Research output per year
Research output per year
Marije E. Kamphuis*, Gijs J. de Vries, Henny Kuipers, Marloes Saaltink, Jacqueline Verschoor, Marcel J.W. Greuter, Riemer H.J.A. Slart, Cornelis H. Slump
Research output: Contribution to journal › Article › Academic › peer-review
We aim to facilitate phantom-based (ground truth) evaluation of dynamic, quantitative myocardial perfusion imaging (MPI) applications. Current MPI phantoms are static representations or lack clinical hard- and software evaluation capabilities. This proof-of-concept study demonstrates the design, realisation and testing of a dedicated cardiac flow phantom. The 3D printed phantom mimics flow through a left ventricular cavity (LVC) and three myocardial segments. In the accompanying fluid circuit, tap water is pumped through the LVC and thereafter partially directed to the segments using adjustable resistances. Regulation hereof mimics perfusion deficit, whereby flow sensors serve as reference standard. Seven phantom measurements were performed while varying injected activity of 99mTc-tetrofosmin (330–550 MBq), cardiac output (1.5–3.0 L/min) and myocardial segmental flows (50–150 mL/min). Image data from dynamic single photon emission computed tomography was analysed with clinical software. Derived time activity curves were reproducible, showing logical trends regarding selected input variables. A promising correlation was found between software computed myocardial flows and its reference (ρ= − 0.98; p = 0.003). This proof-of-concept paper demonstrates we have successfully measured first-pass LV flow and myocardial perfusion in SPECT-MPI using a novel, dedicated, myocardial perfusion phantom. Graphical abstract: This proof-of-concept study focuses on the development of a novel, dedicated myocardial perfusion phantom, ultimately aiming to contribute to the evaluation of quantitative myocardial perfusion imaging applications. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 1541-1550 |
Number of pages | 10 |
Journal | Medical & biological engineering & computing |
Volume | 60 |
Issue number | 6 |
Early online date | 19 Jan 2022 |
DOIs | |
Publication status | Published - Jun 2022 |
Research output: Contribution to journal › Comment/Letter to the editor › Academic › peer-review