Abstract
Continuous fiber reinforced thermoplastic (FRTP) lightweight composite products have become more and more popular for many engineering applications. Laser-assisted tape winding and placement processes (LATW and LATP) are some of the promising manufacturing techniques to produce advanced thermoplastic composite components. A fully automated single step manufacturing can be achieved in LATW and LATP processes when the FRTP prepreg tapes are consolidated “in situ”, which can reduce the production costs and eliminate post consolidation or curing steps. Despite the advantages of these manufacturing techniques, it is a difficult task to predict and control the process temperature which is driven by the laser irradiation, the reflections, the local tooling geometry and the process parameters. It is vital to thoroughly analyze the process temperature, which is critical for the resulting part properties and performance. The focus in this thesis is on the winding of pipes and pressure vessels made of FRTP composites. The performed research was a part of the EU funded ambliFibre project with an ambition of developing a model-based in-line process control for LATW processes. The long term objective of this thesis is to achieve a robust LATW process by compensating the variability in the manufacturing process resulting in repetitive and predictable part properties and performance. The work presented in this thesis takes the first steps towards the long term objective by developing the key building blocks.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 21 Jan 2021 |
Place of Publication | Enschede |
Publisher | |
Print ISBNs | 978-90-365-5120-5 |
DOIs | |
Publication status | Published - 21 Jan 2021 |