TY - JOUR
T1 - Development of a sorption-based Joule-Thomson cooler for the METIS instrument on E-ELT
AU - Wu, Y.
AU - Vermeer, C.H.
AU - Holland, H.J.
AU - Benthem, B.
AU - ter Brake, H.J.M.
PY - 2015
Y1 - 2015
N2 - METIS, the Mid-infrared E-ELT Imager and Spectrograph, is one of the proposed instruments for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 m. Its detectors and optics require cryogenic cooling at four temperature levels, 8 K for the N-band detectors, 25 K for the N-band imager, 40 K for the L/M-band detectors and 70 K for the optics. To provide cooling below 70 K, a vibration-free cooling technology based on sorption coolers is developed at the University of Twente in collaboration with Airbus Defence and Space Netherlands B.V. (former Dutch Space B.V.). We propose a sorption-based cooler with three cascaded Joule-Thomson (JT) coolers of which the sorption compressors are all heat sunk at the 70 K platform. A helium-operated cooler is used to obtain the 8 K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40 K, 25 K and 15 K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40 K level is realized by a neon-based sorption cooler. To validate the designs, three demonstrators were built and tested: 1. Full-scale 8 K helium JT cold stage; 2. Scaled helium sorption compressor; 3. Scaled 40 K neon sorption JT cooler. In this paper, we present the design of these demos. We discuss the experiment results obtained so far, the lessons that were learned from these demos and the future development towards a real METIS cooler.
AB - METIS, the Mid-infrared E-ELT Imager and Spectrograph, is one of the proposed instruments for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 m. Its detectors and optics require cryogenic cooling at four temperature levels, 8 K for the N-band detectors, 25 K for the N-band imager, 40 K for the L/M-band detectors and 70 K for the optics. To provide cooling below 70 K, a vibration-free cooling technology based on sorption coolers is developed at the University of Twente in collaboration with Airbus Defence and Space Netherlands B.V. (former Dutch Space B.V.). We propose a sorption-based cooler with three cascaded Joule-Thomson (JT) coolers of which the sorption compressors are all heat sunk at the 70 K platform. A helium-operated cooler is used to obtain the 8 K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40 K, 25 K and 15 K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40 K level is realized by a neon-based sorption cooler. To validate the designs, three demonstrators were built and tested: 1. Full-scale 8 K helium JT cold stage; 2. Scaled helium sorption compressor; 3. Scaled 40 K neon sorption JT cooler. In this paper, we present the design of these demos. We discuss the experiment results obtained so far, the lessons that were learned from these demos and the future development towards a real METIS cooler.
U2 - 10.1088/1757-899X/101/1/012170
DO - 10.1088/1757-899X/101/1/012170
M3 - Article
SN - 1757-8981
VL - 101
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012170
ER -