Deviations from Fick's Law in Lorentz Gases

C.P. Lowe, D. Frenkel, M.A. van der Hoef

    Research output: Contribution to journalArticleAcademicpeer-review

    7 Citations (Scopus)


    We have calculated the self-dynamic structure factorF(k,t) for tagged particle motion in hopping Lorentz gases. We find evidence that, even at long times, the probability distribution function for the displacement of the particles is highly non-Gaussian. At very small values of the wave vector this manifests itself as the divergence of the Burnett coefficient (the fourth moment of the distribution never approaching a value characteristic of a Gaussian). At somewhat larger wave vectors we find thatF(k,t) decays algebraically, rather than exponentially as one would expect for a Gaussian. The precise form of this power-law decay depends on the nature of the scatterers making up the Lorentz gas. We find different power-law exponents for scatterers which exclude certain sites and scatterers which do not.
    Original languageEnglish
    Pages (from-to)1229-1245
    Number of pages17
    JournalJournal of statistical physics
    Issue number5/6
    Publication statusPublished - 1997


    Dive into the research topics of 'Deviations from Fick's Law in Lorentz Gases'. Together they form a unique fingerprint.

    Cite this