Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

N.W. van den Hijligenberg, N.W. van den Hijligenberg, Ruud Martini

Research output: Book/ReportReportProfessional

41 Downloads (Pure)

Abstract

We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.
Original languageEnglish
Place of PublicationAmsterdam
PublisherC.W.I.
Number of pages8
Publication statusPublished - 1995

Publication series

NameReport / Department of Algebra, Analysis and Geometry
PublisherCWI
No.AM-R9515

    Fingerprint

Keywords

  • METIS-141351
  • IR-102315

Cite this

van den Hijligenberg, N. W., van den Hijligenberg, N. W., & Martini, R. (1995). Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra. (Report / Department of Algebra, Analysis and Geometry; No. AM-R9515). Amsterdam: C.W.I.