Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, raiolytic stability, emission spectroscopy, and thermodynamic studies

Prasanta K. Mohapatra, A. Sengupta, M. Iqbal, Jurriaan Huskens, Willem Verboom

Research output: Contribution to journalArticleAcademicpeer-review

92 Citations (Scopus)

Abstract

Diglycolamide-functionalized calix[4]arenes (C4DGAs) with varying structural modifications were evaluated for actinide complexation from their extraction behavior toward actinide ions such as UO22+, Pu4+, PuO22+, and Am3+ in the room temperature ionic liquid (RTIL) 1-n-octyl-3-methylimidazolium bis(trifluoromethane)sulfonamide (C8mimNTf2). The formation constants were calculated for Am3+ which showed a significant role of ligand structure, nature of substituents, and spacer length. Although the alkyl substituents on the amidic nitrogen increase the extraction efficiency of americium at lower acidity because of the inductive effect of the alkyl groups, at higher acidity the steric crowding around the ligating site determines the extraction efficiency. All C4DGAs formed 1:1 complexes with Am3+ while for the analogous Eu3+ complexes no inner sphere water molecules were detected and the asymmetry of the metal ligand complex differed from one another as proved by time-resolved laser induced fluorescence spectroscopy (TRLIFS). Thermodynamic studies indicated that the extraction process, predominant by the Am3+-C4DGA complexation reaction, is exothermic. The unique role of the medium on Am3+ complexation with the C4DGA molecules with varying spacer length, L-IV and L-V, was noticed for the first time with a reversal in the trend observed in the RTIL compared to that seen in a nonpolar molecular diluent like n-dodecane. Various factors leading to a more preorganized structure were responsible for favorable metal ion complexation. The solvent systems show promise to be employed for nuclear waste remediation, and sustainability options were evaluated from radiolytic stability as well as stripping studies.
Original languageEnglish
Pages (from-to)2533-2541
Number of pages9
JournalInorganic chemistry
Volume52
Issue number5
DOIs
Publication statusPublished - 2013

Keywords

  • METIS-301603
  • IR-90134

Fingerprint

Dive into the research topics of 'Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, raiolytic stability, emission spectroscopy, and thermodynamic studies'. Together they form a unique fingerprint.

Cite this