Discontinuous Galerkin finite element methods for hyperbolic differential equations

Jacobus J.W. van der Vegt, H. van der Ven, O.J. Boelens, O.J. Boelens

    Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

    Abstract

    In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas dynamics in time-dependent flows domains and to techniques which reduce the computational complexity of the DG method.
    Original languageUndefined
    Title of host publicationGodunov Methods, Theory and Applications
    EditorsE.F. Toro
    Place of PublicationDordrecht
    PublisherKluwer Academic/Plenum Publishers
    Pages985-1006
    Number of pages22
    ISBN (Print)978-0-306-46601-4
    Publication statusPublished - 2002

    Publication series

    Name
    PublisherKluwer Academic

    Keywords

    • METIS-200381
    • EWI-16279
    • IR-76143

    Cite this

    van der Vegt, J. J. W., van der Ven, H., Boelens, O. J., & Boelens, O. J. (2002). Discontinuous Galerkin finite element methods for hyperbolic differential equations. In E. F. Toro (Ed.), Godunov Methods, Theory and Applications (pp. 985-1006). Dordrecht: Kluwer Academic/Plenum Publishers.