### Abstract

Original language | Undefined |
---|---|

Place of Publication | Enschede |

Publisher | Formal Methods and Tools (FMT) |

Number of pages | 18 |

Publication status | Published - 9 Oct 2009 |

### Publication series

Name | CTIT Technical Report Series |
---|---|

Publisher | University of Twente, Centre for Telematics and Information Technology |

No. | TR-CTIT-09-37 |

ISSN (Print) | 1381-3625 |

### Keywords

- EWI-11506
- EC Grant Agreement nr.: FP6/043235
- IR-68145
- METIS-263678

### Cite this

*Distributed Branching Bisimulation Minimization by Inductive Signatures*. (CTIT Technical Report Series; No. TR-CTIT-09-37). Enschede: Formal Methods and Tools (FMT).

}

*Distributed Branching Bisimulation Minimization by Inductive Signatures*. CTIT Technical Report Series, no. TR-CTIT-09-37, Formal Methods and Tools (FMT), Enschede.

**Distributed Branching Bisimulation Minimization by Inductive Signatures.** / Blom, Stefan; van de Pol, Jan Cornelis.

Research output: Book/Report › Report › Professional

TY - BOOK

T1 - Distributed Branching Bisimulation Minimization by Inductive Signatures

AU - Blom, Stefan

AU - van de Pol, Jan Cornelis

PY - 2009/10/9

Y1 - 2009/10/9

N2 - We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no $\tau$-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms.

AB - We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no $\tau$-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms.

KW - EWI-11506

KW - EC Grant Agreement nr.: FP6/043235

KW - IR-68145

KW - METIS-263678

M3 - Report

T3 - CTIT Technical Report Series

BT - Distributed Branching Bisimulation Minimization by Inductive Signatures

PB - Formal Methods and Tools (FMT)

CY - Enschede

ER -