Distributed management of energy communities using stochastic profile steering

Juan Camilo López*, Aditya Pappu, Gerwin Hoogsteen, Johann L. Hurink, Marcos J. Rider

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

57 Downloads (Pure)

Abstract

This paper presents a novel approach for distributed management of energy communities. The proposed method utilizes a stochastic profile steering algorithm as a greedy heuristic. The optimization process considers random parameters such as local forecasted demand, photovoltaic (PV) production, and the initial energy of electric vehicles (EVs) as embedded scenarios. Profile steering coordinates the flexible electricity assets within an energy community by determining the contribution of each prosumer's profile to the average value of the objective function. It iteratively selects the prosumer that contributes the most until no further improvements can be made. This process scales linearly with the number of controllable prosumers and can achieve various community-level objectives, such as maximizing self-sufficiency or minimizing aggregated cost-of-energy, even when dealing with non-convex optimization problems for modeling each prosumer's local energy management system. The outcome of the proposed method optimizes the average value of the community's objective while ensuring that grid limitations are met within a specified probability. The proposed method is evaluated through simulations involving small-scale communities (5 households) and large-scale communities (100 households). The results demonstrate the efficiency, flexibility, and scalability of the proposed method, as well as its ability to reschedule the aggregated demand to ensure that grid limits are not violated with at least a 95% probability.

Original languageEnglish
Article number109973
JournalInternational Journal of Electrical Power and Energy Systems
Volume158
DOIs
Publication statusPublished - Jul 2024

Keywords

  • UT-Hybrid-D
  • Energy communities
  • Flexible energy assets
  • Probabilistic grid limits
  • Stochastic profile steering
  • Distributed energy management system

Fingerprint

Dive into the research topics of 'Distributed management of energy communities using stochastic profile steering'. Together they form a unique fingerprint.

Cite this