TY - UNPB
T1 - Dyadic partition-based training schemes for TV/TGV denoising
AU - Davoli, Elisa
AU - Ferreira, Rita
AU - Fonseca, Irene
AU - Iglesias, José A.
PY - 2023/5/11
Y1 - 2023/5/11
N2 - Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters, that box constraints for the values of the parameters lead to existence of finite optimal partitions, and converse results for well-prepared data. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.
AB - Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters, that box constraints for the values of the parameters lead to existence of finite optimal partitions, and converse results for well-prepared data. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.
KW - math.AP
KW - math.OC
KW - 68U10, 26A45, 49J10, 94A08
U2 - 10.48550/arXiv.2305.07150
DO - 10.48550/arXiv.2305.07150
M3 - Preprint
BT - Dyadic partition-based training schemes for TV/TGV denoising
PB - ArXiv.org
ER -