TY - JOUR

T1 - Dynamics of heavy and buoyant underwater pendulums

AU - Mathai, Varghese

AU - Loeffen, Laura

AU - Chan, Timothy T.K.

AU - Wildeman, Sander

N1 - Cambridge UP deal

PY - 2019/1/16

Y1 - 2019/1/16

N2 - The humble pendulum is often invoked as the archetype of a simple, gravity driven, oscillator. Under ideal circumstances, the oscillation frequency of the pendulum is independent of its mass and swing amplitude. However, in most real-world situations, the dynamics of pendulums is not quite so simple, particularly with additional interactions between the pendulum and a surrounding fluid. Here we extend the realm of pendulum studies to include large amplitude oscillations of heavy and buoyant pendulums in a fluid. We performed experiments with massive and hollow cylindrical pendulums in water, and constructed a simple model that takes the buoyancy, added mass, fluid (nonlinear) drag and bearing friction into account. To first order, the model predicts the oscillation frequencies, peak decelerations and damping rate well. An interesting effect of the nonlinear drag captured well by the model is that, for heavy pendulums, the damping time shows a non-monotonic dependence on pendulum mass, reaching a minimum when the pendulum mass density is nearly twice that of the fluid. Small deviations from the model’s predictions are seen, particularly in the second and subsequent maxima of oscillations. Using time-resolved particle image velocimetry (TR-PIV), we reveal that these deviations likely arise due to the disturbed flow created by the pendulum at earlier times. The mean wake velocity obtained from PIV is used to model an extra drag term due to incoming wake flow. The revised model significantly improves the predictions for the second and subsequent oscillations.

AB - The humble pendulum is often invoked as the archetype of a simple, gravity driven, oscillator. Under ideal circumstances, the oscillation frequency of the pendulum is independent of its mass and swing amplitude. However, in most real-world situations, the dynamics of pendulums is not quite so simple, particularly with additional interactions between the pendulum and a surrounding fluid. Here we extend the realm of pendulum studies to include large amplitude oscillations of heavy and buoyant pendulums in a fluid. We performed experiments with massive and hollow cylindrical pendulums in water, and constructed a simple model that takes the buoyancy, added mass, fluid (nonlinear) drag and bearing friction into account. To first order, the model predicts the oscillation frequencies, peak decelerations and damping rate well. An interesting effect of the nonlinear drag captured well by the model is that, for heavy pendulums, the damping time shows a non-monotonic dependence on pendulum mass, reaching a minimum when the pendulum mass density is nearly twice that of the fluid. Small deviations from the model’s predictions are seen, particularly in the second and subsequent maxima of oscillations. Using time-resolved particle image velocimetry (TR-PIV), we reveal that these deviations likely arise due to the disturbed flow created by the pendulum at earlier times. The mean wake velocity obtained from PIV is used to model an extra drag term due to incoming wake flow. The revised model significantly improves the predictions for the second and subsequent oscillations.

KW - UT-Hybrid-D

U2 - 10.1017/jfm.2018.867

DO - 10.1017/jfm.2018.867

M3 - Article

VL - 862

SP - 348

EP - 363

JO - Journal of fluid mechanics

JF - Journal of fluid mechanics

SN - 0022-1120

ER -