TY - UNPB
T1 - EDF-Like Scheduling for Self-Suspending Real-Time Tasks
AU - Günzel, Mario
AU - Chen, Kuan-Hsun
AU - Chen, Jian-Jia
PY - 2021/11/18
Y1 - 2021/11/18
N2 - In real-time systems, schedulability tests are utilized to provide timing guarantees. However, for self-suspending task sets, current suspension-aware schedulability tests are limited to Task-Level Fixed-Priority~(TFP) scheduling or Earliest-Deadline-First~(EDF) with constrained-deadline task systems. In this work we provide a unifying schedulability test for the uniprocessor version of Global EDF-Like (GEL) schedulers and arbitrary-deadline task sets. A large body of existing scheduling algorithms can be considered as EDF-Like, such as EDF, First-In-First-Out~(FIFO), Earliest-Quasi-Deadline-First~(EQDF) and Suspension-Aware EDF~(SAEDF). Therefore, the unifying schedulability test is applicable to those algorithms. Moreover, the schedulability test can be applied to TFP scheduling as well. Our analysis is the first suspension-aware schedulability test applicable to arbitrary-deadline sporadic real-time task systems under Job-Level Fixed-Priority (JFP) scheduling, such as EDF. Moreover, it is the first unifying suspension-aware schedulability test framework that covers a wide range of scheduling algorithms. Through numerical simulations, we show that the schedulability test outperforms the state of the art for EDF under constrained-deadline scenarios. Moreover, we demonstrate the performance of different configurations under EQDF and SAEDF.
AB - In real-time systems, schedulability tests are utilized to provide timing guarantees. However, for self-suspending task sets, current suspension-aware schedulability tests are limited to Task-Level Fixed-Priority~(TFP) scheduling or Earliest-Deadline-First~(EDF) with constrained-deadline task systems. In this work we provide a unifying schedulability test for the uniprocessor version of Global EDF-Like (GEL) schedulers and arbitrary-deadline task sets. A large body of existing scheduling algorithms can be considered as EDF-Like, such as EDF, First-In-First-Out~(FIFO), Earliest-Quasi-Deadline-First~(EQDF) and Suspension-Aware EDF~(SAEDF). Therefore, the unifying schedulability test is applicable to those algorithms. Moreover, the schedulability test can be applied to TFP scheduling as well. Our analysis is the first suspension-aware schedulability test applicable to arbitrary-deadline sporadic real-time task systems under Job-Level Fixed-Priority (JFP) scheduling, such as EDF. Moreover, it is the first unifying suspension-aware schedulability test framework that covers a wide range of scheduling algorithms. Through numerical simulations, we show that the schedulability test outperforms the state of the art for EDF under constrained-deadline scenarios. Moreover, we demonstrate the performance of different configurations under EQDF and SAEDF.
KW - cs.OS
U2 - 10.48550/arXiv.2111.09725
DO - 10.48550/arXiv.2111.09725
M3 - Working paper
BT - EDF-Like Scheduling for Self-Suspending Real-Time Tasks
PB - ArXiv
ER -