TY - JOUR
T1 - Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis
AU - Wang, Zhouhong
AU - McDonald, Armando G.
AU - Westerhof, Roel Johannes Maria
AU - Kersten, Sascha R.A.
AU - Cuba-Torres, Christian M.
AU - Ha, Su
AU - Pecha, Brennan
AU - Garcia-Perez, Manuel
PY - 2013
Y1 - 2013
N2 - The effect of cellulose crystallinity on the formation of a liquid intermediate and on its thermal degradation was studied thermogravimetrically and by Py-GC/MS using a control cellulose (Avicel, crystallinity at 60.5%) and ball-milled Avicel (low cellulose crystallinity at 6.5%). The crystallinity of the materials studied was quantified by XRD and FTIR. Thermogravimetric analyses (TGA) show the samples with lower crystallinity start to degrade at lower temperatures, exhibiting sharper DTG curves and lower thermal degradation activation energies. Scanning electron microscopy (SEM) studies of the solid residues formed in TGA tests showed that, while the conversion of the ball-milled cellulose (mostly amorphous cellulose) occurs through the formation of a liquid intermediate, in the conversion of the control the fibrous structure is conserved. Py-GC/MS studies showed major differences in the thermal behavior of the samples studied. At 300 °C, amorphous cellulose yielded more levoglucosan. At temperatures between 350 and 450 °C, higher yields of mono-anhydrosugars (levoglucosan and levoglucosenone) were obtained with the samples with higher crystallinity (control). The ball-milled cellulose produced more 5-(hydroxymethyl) furfural, 5-methylfurfural and furfural. The higher yields of these compounds are due to the acceleration of dehydration reactions when a liquid phase intermediate was formed. Fragmentation reactions responsible for the formation of light compounds (glycoaldehyde, acetic acid, methyl-vinyl-ketone and acetol) and the reactions responsible for the formation of cyclopentane do not seem to be affected by cellulose crystallinity and by the formation of a liquid intermediate.
AB - The effect of cellulose crystallinity on the formation of a liquid intermediate and on its thermal degradation was studied thermogravimetrically and by Py-GC/MS using a control cellulose (Avicel, crystallinity at 60.5%) and ball-milled Avicel (low cellulose crystallinity at 6.5%). The crystallinity of the materials studied was quantified by XRD and FTIR. Thermogravimetric analyses (TGA) show the samples with lower crystallinity start to degrade at lower temperatures, exhibiting sharper DTG curves and lower thermal degradation activation energies. Scanning electron microscopy (SEM) studies of the solid residues formed in TGA tests showed that, while the conversion of the ball-milled cellulose (mostly amorphous cellulose) occurs through the formation of a liquid intermediate, in the conversion of the control the fibrous structure is conserved. Py-GC/MS studies showed major differences in the thermal behavior of the samples studied. At 300 °C, amorphous cellulose yielded more levoglucosan. At temperatures between 350 and 450 °C, higher yields of mono-anhydrosugars (levoglucosan and levoglucosenone) were obtained with the samples with higher crystallinity (control). The ball-milled cellulose produced more 5-(hydroxymethyl) furfural, 5-methylfurfural and furfural. The higher yields of these compounds are due to the acceleration of dehydration reactions when a liquid phase intermediate was formed. Fragmentation reactions responsible for the formation of light compounds (glycoaldehyde, acetic acid, methyl-vinyl-ketone and acetol) and the reactions responsible for the formation of cyclopentane do not seem to be affected by cellulose crystallinity and by the formation of a liquid intermediate.
KW - IR-90001
KW - METIS-298190
U2 - 10.1016/j.jaap.2012.11.017
DO - 10.1016/j.jaap.2012.11.017
M3 - Article
SN - 0165-2370
VL - 100
SP - 56
EP - 66
JO - Journal of analytical and applied pyrolysis
JF - Journal of analytical and applied pyrolysis
ER -