Effect of Different EndoAnchor Configurations on Aortic Endograft Displacement Resistance: An Experimental Study

Seline R. Goudeketting, Jenske J.M. Vermeulen, Kim van Noort, Gerben te Riet o. g. Scholten, Henny Kuipers, Cornelis H. Slump, Jean Paul P.M. de Vries

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
1 Downloads (Pure)

Abstract

Purpose: This study investigated the effect of different EndoAnchor configurations on aortic endograft displacement resistance in an in vitro model. Materials and Methods: An in vitro model was developed and validated to perform displacement force measurements on different EndoAnchor configurations within an endograft and silicone tube. Five EndoAnchor configurations were created: (1) 6 circumferentially deployed EndoAnchors, (2) 5 EndoAnchors within 120° of the circumference and 1 additional, contralateral EndoAnchor, (3) 4 circumferentially deployed EndoAnchors, (4) 2 rows of 4 circumferentially deployed EndoAnchors, and (5) a configuration of 2 columns of 3 EndoAnchors. An experienced vascular surgeon deployed EndoAnchors under C-arm guidance at the proximal sealing zone of the endograft. A constant force with increments of 1 newton (N) was applied to the distal end of the endograft. The force necessary to displace a part of the endograft by 3 mm was defined as the endograft displacement force (EDF). Two video cameras recorded the measurements. Videos were examined to determine the exact moment 3-mm migration had occurred at part of the endograft. Five measurements were performed after each deployed EndoAnchor for each configuration. Measurements are given as the median and interquartile range (IQR) Q1, Q3. Results: Baseline displacement force measurement of the endograft without EndoAnchors resulted in a median EDF of 5.1 N (IQR 4.8, 5.2). The circumferential distribution of 6 EndoAnchors resulted in a median EDF of 53.7 N (IQR 49.0, 59.0), whereas configurations 2 through 5 demonstrated substantially lower EDFs of 29.0 N (IQR 28.5, 30.1), 24.6 N (IQR 21.9, 27.2), 36.7 N, and 9.6 N (IQR 9.4, 10.0), respectively. Decreasing the distance between the EndoAnchors over the circumference of the endograft increased the displacement resistance. Conclusion: This in vitro study demonstrates the influence EndoAnchor configurations have on the displacement resistance of an aortic endograft. Parts of the endograft where no EndoAnchor has been deployed remain sensitive to migration. In the current model, the only configuration that rivaled a hand-sewn anastomosis was the one with 6 EndoAnchors. A circumferential distribution of EndoAnchors with small distances between EndoAnchors should be pursued, if possible. This study provides a quantification of different EndoAnchor configurations that clinicians may have to adopt in clinical practice, which can help them make a measured decision on where to deploy EndoAnchors to ensure good endograft fixation.

Original languageEnglish
Pages (from-to)704-713
Number of pages10
JournalJournal of Endovascular Therapy
Volume26
Issue number5
Early online date18 Jul 2019
DOIs
Publication statusPublished - 1 Oct 2019

Fingerprint

Silicones
Blood Vessels
Arm
Hand
In Vitro Techniques
Surgeons

Keywords

  • UT-Hybrid-D
  • endoanchor
  • endograft
  • endoleak
  • fixation
  • in vitro model
  • migration
  • proximal neck
  • sealing zone
  • stent-graft
  • displacement force

Cite this

@article{361e988c628e47e5b1a5303057494240,
title = "Effect of Different EndoAnchor Configurations on Aortic Endograft Displacement Resistance: An Experimental Study",
abstract = "Purpose: This study investigated the effect of different EndoAnchor configurations on aortic endograft displacement resistance in an in vitro model. Materials and Methods: An in vitro model was developed and validated to perform displacement force measurements on different EndoAnchor configurations within an endograft and silicone tube. Five EndoAnchor configurations were created: (1) 6 circumferentially deployed EndoAnchors, (2) 5 EndoAnchors within 120° of the circumference and 1 additional, contralateral EndoAnchor, (3) 4 circumferentially deployed EndoAnchors, (4) 2 rows of 4 circumferentially deployed EndoAnchors, and (5) a configuration of 2 columns of 3 EndoAnchors. An experienced vascular surgeon deployed EndoAnchors under C-arm guidance at the proximal sealing zone of the endograft. A constant force with increments of 1 newton (N) was applied to the distal end of the endograft. The force necessary to displace a part of the endograft by 3 mm was defined as the endograft displacement force (EDF). Two video cameras recorded the measurements. Videos were examined to determine the exact moment 3-mm migration had occurred at part of the endograft. Five measurements were performed after each deployed EndoAnchor for each configuration. Measurements are given as the median and interquartile range (IQR) Q1, Q3. Results: Baseline displacement force measurement of the endograft without EndoAnchors resulted in a median EDF of 5.1 N (IQR 4.8, 5.2). The circumferential distribution of 6 EndoAnchors resulted in a median EDF of 53.7 N (IQR 49.0, 59.0), whereas configurations 2 through 5 demonstrated substantially lower EDFs of 29.0 N (IQR 28.5, 30.1), 24.6 N (IQR 21.9, 27.2), 36.7 N, and 9.6 N (IQR 9.4, 10.0), respectively. Decreasing the distance between the EndoAnchors over the circumference of the endograft increased the displacement resistance. Conclusion: This in vitro study demonstrates the influence EndoAnchor configurations have on the displacement resistance of an aortic endograft. Parts of the endograft where no EndoAnchor has been deployed remain sensitive to migration. In the current model, the only configuration that rivaled a hand-sewn anastomosis was the one with 6 EndoAnchors. A circumferential distribution of EndoAnchors with small distances between EndoAnchors should be pursued, if possible. This study provides a quantification of different EndoAnchor configurations that clinicians may have to adopt in clinical practice, which can help them make a measured decision on where to deploy EndoAnchors to ensure good endograft fixation.",
keywords = "UT-Hybrid-D, endoanchor, endograft, endoleak, fixation, in vitro model, migration, proximal neck, sealing zone, stent-graft, displacement force",
author = "Goudeketting, {Seline R.} and Vermeulen, {Jenske J.M.} and {van Noort}, Kim and {te Riet o. g. Scholten}, Gerben and Henny Kuipers and Slump, {Cornelis H.} and {de Vries}, {Jean Paul P.M.}",
note = "Sage deal",
year = "2019",
month = "10",
day = "1",
doi = "10.1177/1526602819857586",
language = "English",
volume = "26",
pages = "704--713",
journal = "Journal of Endovascular Therapy",
issn = "1526-6028",
publisher = "SAGE Publications",
number = "5",

}

Effect of Different EndoAnchor Configurations on Aortic Endograft Displacement Resistance : An Experimental Study. / Goudeketting, Seline R.; Vermeulen, Jenske J.M.; van Noort, Kim; te Riet o. g. Scholten, Gerben; Kuipers, Henny; Slump, Cornelis H.; de Vries, Jean Paul P.M.

In: Journal of Endovascular Therapy, Vol. 26, No. 5, 01.10.2019, p. 704-713.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Effect of Different EndoAnchor Configurations on Aortic Endograft Displacement Resistance

T2 - An Experimental Study

AU - Goudeketting, Seline R.

AU - Vermeulen, Jenske J.M.

AU - van Noort, Kim

AU - te Riet o. g. Scholten, Gerben

AU - Kuipers, Henny

AU - Slump, Cornelis H.

AU - de Vries, Jean Paul P.M.

N1 - Sage deal

PY - 2019/10/1

Y1 - 2019/10/1

N2 - Purpose: This study investigated the effect of different EndoAnchor configurations on aortic endograft displacement resistance in an in vitro model. Materials and Methods: An in vitro model was developed and validated to perform displacement force measurements on different EndoAnchor configurations within an endograft and silicone tube. Five EndoAnchor configurations were created: (1) 6 circumferentially deployed EndoAnchors, (2) 5 EndoAnchors within 120° of the circumference and 1 additional, contralateral EndoAnchor, (3) 4 circumferentially deployed EndoAnchors, (4) 2 rows of 4 circumferentially deployed EndoAnchors, and (5) a configuration of 2 columns of 3 EndoAnchors. An experienced vascular surgeon deployed EndoAnchors under C-arm guidance at the proximal sealing zone of the endograft. A constant force with increments of 1 newton (N) was applied to the distal end of the endograft. The force necessary to displace a part of the endograft by 3 mm was defined as the endograft displacement force (EDF). Two video cameras recorded the measurements. Videos were examined to determine the exact moment 3-mm migration had occurred at part of the endograft. Five measurements were performed after each deployed EndoAnchor for each configuration. Measurements are given as the median and interquartile range (IQR) Q1, Q3. Results: Baseline displacement force measurement of the endograft without EndoAnchors resulted in a median EDF of 5.1 N (IQR 4.8, 5.2). The circumferential distribution of 6 EndoAnchors resulted in a median EDF of 53.7 N (IQR 49.0, 59.0), whereas configurations 2 through 5 demonstrated substantially lower EDFs of 29.0 N (IQR 28.5, 30.1), 24.6 N (IQR 21.9, 27.2), 36.7 N, and 9.6 N (IQR 9.4, 10.0), respectively. Decreasing the distance between the EndoAnchors over the circumference of the endograft increased the displacement resistance. Conclusion: This in vitro study demonstrates the influence EndoAnchor configurations have on the displacement resistance of an aortic endograft. Parts of the endograft where no EndoAnchor has been deployed remain sensitive to migration. In the current model, the only configuration that rivaled a hand-sewn anastomosis was the one with 6 EndoAnchors. A circumferential distribution of EndoAnchors with small distances between EndoAnchors should be pursued, if possible. This study provides a quantification of different EndoAnchor configurations that clinicians may have to adopt in clinical practice, which can help them make a measured decision on where to deploy EndoAnchors to ensure good endograft fixation.

AB - Purpose: This study investigated the effect of different EndoAnchor configurations on aortic endograft displacement resistance in an in vitro model. Materials and Methods: An in vitro model was developed and validated to perform displacement force measurements on different EndoAnchor configurations within an endograft and silicone tube. Five EndoAnchor configurations were created: (1) 6 circumferentially deployed EndoAnchors, (2) 5 EndoAnchors within 120° of the circumference and 1 additional, contralateral EndoAnchor, (3) 4 circumferentially deployed EndoAnchors, (4) 2 rows of 4 circumferentially deployed EndoAnchors, and (5) a configuration of 2 columns of 3 EndoAnchors. An experienced vascular surgeon deployed EndoAnchors under C-arm guidance at the proximal sealing zone of the endograft. A constant force with increments of 1 newton (N) was applied to the distal end of the endograft. The force necessary to displace a part of the endograft by 3 mm was defined as the endograft displacement force (EDF). Two video cameras recorded the measurements. Videos were examined to determine the exact moment 3-mm migration had occurred at part of the endograft. Five measurements were performed after each deployed EndoAnchor for each configuration. Measurements are given as the median and interquartile range (IQR) Q1, Q3. Results: Baseline displacement force measurement of the endograft without EndoAnchors resulted in a median EDF of 5.1 N (IQR 4.8, 5.2). The circumferential distribution of 6 EndoAnchors resulted in a median EDF of 53.7 N (IQR 49.0, 59.0), whereas configurations 2 through 5 demonstrated substantially lower EDFs of 29.0 N (IQR 28.5, 30.1), 24.6 N (IQR 21.9, 27.2), 36.7 N, and 9.6 N (IQR 9.4, 10.0), respectively. Decreasing the distance between the EndoAnchors over the circumference of the endograft increased the displacement resistance. Conclusion: This in vitro study demonstrates the influence EndoAnchor configurations have on the displacement resistance of an aortic endograft. Parts of the endograft where no EndoAnchor has been deployed remain sensitive to migration. In the current model, the only configuration that rivaled a hand-sewn anastomosis was the one with 6 EndoAnchors. A circumferential distribution of EndoAnchors with small distances between EndoAnchors should be pursued, if possible. This study provides a quantification of different EndoAnchor configurations that clinicians may have to adopt in clinical practice, which can help them make a measured decision on where to deploy EndoAnchors to ensure good endograft fixation.

KW - UT-Hybrid-D

KW - endoanchor

KW - endograft

KW - endoleak

KW - fixation

KW - in vitro model

KW - migration

KW - proximal neck

KW - sealing zone

KW - stent-graft

KW - displacement force

U2 - 10.1177/1526602819857586

DO - 10.1177/1526602819857586

M3 - Article

VL - 26

SP - 704

EP - 713

JO - Journal of Endovascular Therapy

JF - Journal of Endovascular Therapy

SN - 1526-6028

IS - 5

ER -