Efficiency of equilibria in uniform matroid congestion games

Research output: Book/ReportReportOther research output

6 Citations (Scopus)
112 Downloads (Pure)

Abstract

Network routing games, and more generally congestion games play a central role in algorithmic game theory, comparable to the role of the traveling salesman problem in combinatorial optimization. It is known that the price of anarchy is independent of the network topology for non-atomic congestion games. In other words, it is independent of the structure of the strategy spaces of the players, and for affine cost functions it equals 4/3. In this paper, we show that the dependence of the price of anarchy on the network topology is considerably more intricate for atomic congestion games. More specifically, we consider congestion games with affine cost functions where the strategy spaces of players are symmetric and equal to the set of bases of a k-uniform matroid. In this setting, we show that the price of anarchy is strictly larger than the price of anarchy for singleton strategy spaces where the latter is 4/3. As our main result we show that the price of anarchy can be bounded from above by 28/13. This constitutes a substantial improvement over the price of anarchy bound 5/2, which is known to be tight for arbitrary network routing games with affine cost functions.
Original languageUndefined
Place of PublicationEnschede
PublisherCentre for Telematics and Information Technology (CTIT)
Number of pages16
Publication statusPublished - 22 Feb 2016

Publication series

NameCTIT Technical Report Series
PublisherUniversity of Twente, Centre for Telematics and Information Technology (CTIT)
No.TR-CTIT-16-04
ISSN (Print)1381-3625

Keywords

  • MSC-90C27
  • Matroid strategy spaces
  • IR-100255
  • Price of Anarchy
  • Affine cost functions
  • EWI-26855
  • METIS-316842
  • Atomic congestion games

Cite this

de Jong, J., Klimm, M., & Uetz, M. J. (2016). Efficiency of equilibria in uniform matroid congestion games. (CTIT Technical Report Series; No. TR-CTIT-16-04). Enschede: Centre for Telematics and Information Technology (CTIT).