Efficient thermal simulation of large-scale metal additive manufacturing using hot element addition

Björn Nijhuis*, Bert Geijselaers, Antonius H. van den Boogaard

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)
171 Downloads (Pure)


Directed energy deposition processes can reduce material waste and manufacturing time of large metal parts through near net-shape production at high deposition rates. However, the localised high heat input gives rise to undesired heat accumulation, residual stresses and distortions. In this work, a fast thermal model is developed to aid in predicting and preventing these drawbacks by providing insight in the relation between process settings, deposition strategy and thermal response. Material addition and heat input are efficiently combined by adding new elements at elevated temperature. Newly deposited elements are assigned an artificially enhanced heat capacity to match the process heat input. The discontinuous Galerkin finite element method is used for spatial discretisation. The resulting numerical scheme is fully explicit and can be solved element-wise. Unlike previous prescribed-temperature heat input models, the proposed method correctly captures the process heat input, irrespective of substrate temperature and element size and without calibration. Comparison with experimental data shows that the thermal history of a large additively manufactured part can be accurately predicted.
Original languageEnglish
Article number106463
Number of pages11
JournalComputers & Structures
Early online date29 Dec 2020
Publication statusPublished - Mar 2021


  • UT-Hybrid-D
  • Discontinuous Galerkin method
  • Wire and arc additive manufacturing (WAAM)
  • Directed energy deposition
  • Thermal analysis


Dive into the research topics of 'Efficient thermal simulation of large-scale metal additive manufacturing using hot element addition'. Together they form a unique fingerprint.

Cite this