TY - JOUR
T1 - Electrical Resistance of AgTS-S(CH2)n-1CH3//Ga2O3/EGaln Tunneling Junctions
AU - Cademartiri, Ludovico
AU - Thuo, Martin M.
AU - Nijhuis, Christian A.
AU - Reus, William F.
AU - Tricard, Simon
AU - Barber, Jabulani R.
AU - Sodhi, Rana N. S.
AU - Brodersen, Peter
AU - Kim, Choongik
AU - Chiechi, Ryan C.
AU - Whitesides, George M.
PY - 2012/5/24
Y1 - 2012/5/24
N2 - Tunneling junctions having the structure AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn allow physical–organic studies of charge transport across self-assembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 °C) oxidizes and adsorbs―like other high-energy surfaces―adventitious contaminants. The interface between the EGaIn and the SAM thus includes a film of metal oxide, and probably also organic material adsorbed on this film; this interface will influence the properties and operation of the junctions. A combination of structural, chemical, and electrical characterizations leads to four conclusions about AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn junctions. (i) The oxide is ∼0.7 nm thick on average, is composed mostly of Ga2O3, and appears to be self-limiting in its growth. (ii) The structure and composition (but not necessarily the contact area) of the junctions are conserved from junction to junction. (iii) The transport of charge through the junctions is dominated by the alkanethiolate SAM and not by the oxide or by the contaminants. (iv) The interface between the oxide and the eutectic alloy is rough at the micrometer scale.
AB - Tunneling junctions having the structure AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn allow physical–organic studies of charge transport across self-assembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 °C) oxidizes and adsorbs―like other high-energy surfaces―adventitious contaminants. The interface between the EGaIn and the SAM thus includes a film of metal oxide, and probably also organic material adsorbed on this film; this interface will influence the properties and operation of the junctions. A combination of structural, chemical, and electrical characterizations leads to four conclusions about AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn junctions. (i) The oxide is ∼0.7 nm thick on average, is composed mostly of Ga2O3, and appears to be self-limiting in its growth. (ii) The structure and composition (but not necessarily the contact area) of the junctions are conserved from junction to junction. (iii) The transport of charge through the junctions is dominated by the alkanethiolate SAM and not by the oxide or by the contaminants. (iv) The interface between the oxide and the eutectic alloy is rough at the micrometer scale.
U2 - 10.1021/jp212501s
DO - 10.1021/jp212501s
M3 - Article
VL - 116
SP - 10848
EP - 10860
JO - Journal of physical chemistry C
JF - Journal of physical chemistry C
SN - 1932-7447
IS - 20
ER -