Electrically controllable oscillator circuit, and electrically controllable filter arrangement comprising said circuits

Bram Nauta (Inventor)

Research output: PatentProfessional

9 Downloads (Pure)

Abstract

An electrically controllable oscillator circuit (30) comprises two balanced transconductance circuits (G1, G2), each including transistor pairs arranged as inverters (Inv14) and as resistors (Inv5-6). The oscillation frequency (f) and the quality factor (Q) of the oscillator circuit (30) are controlled by means of a single control signal provided by a combined control circuit (Inv7, Dif, IM1, IM2). The current mirror circuit (IM1, IM2) and a differential pair (Dif) derived the control signal for adjusting the quality factor (Q) from a resistor-connected further transistor pair (Inv7) connected to the control signal for adjusting the frequency (f). The quality factor of an electrically controllable filter arangement including similar transconductance circuits (G-3-9) is adjusted by means of the control signal generated by the control circuit via a buffer circuit (B) and a low-pass circuit (C3).
Original languageUndefined
Patent numberUS005117205A
Priority date1/05/90
Publication statusPublished - 26 May 1992

Keywords

  • IR-102653
  • EWI-27526

Cite this

@misc{7666932ee2bd4fafa748bb4ee5802e7c,
title = "Electrically controllable oscillator circuit, and electrically controllable filter arrangement comprising said circuits",
abstract = "An electrically controllable oscillator circuit (30) comprises two balanced transconductance circuits (G1, G2), each including transistor pairs arranged as inverters (Inv14) and as resistors (Inv5-6). The oscillation frequency (f) and the quality factor (Q) of the oscillator circuit (30) are controlled by means of a single control signal provided by a combined control circuit (Inv7, Dif, IM1, IM2). The current mirror circuit (IM1, IM2) and a differential pair (Dif) derived the control signal for adjusting the quality factor (Q) from a resistor-connected further transistor pair (Inv7) connected to the control signal for adjusting the frequency (f). The quality factor of an electrically controllable filter arangement including similar transconductance circuits (G-3-9) is adjusted by means of the control signal generated by the control circuit via a buffer circuit (B) and a low-pass circuit (C3).",
keywords = "IR-102653, EWI-27526",
author = "Bram Nauta",
year = "1992",
month = "5",
day = "26",
language = "Undefined",
type = "Patent",
note = "US005117205A",

}

TY - PAT

T1 - Electrically controllable oscillator circuit, and electrically controllable filter arrangement comprising said circuits

AU - Nauta, Bram

PY - 1992/5/26

Y1 - 1992/5/26

N2 - An electrically controllable oscillator circuit (30) comprises two balanced transconductance circuits (G1, G2), each including transistor pairs arranged as inverters (Inv14) and as resistors (Inv5-6). The oscillation frequency (f) and the quality factor (Q) of the oscillator circuit (30) are controlled by means of a single control signal provided by a combined control circuit (Inv7, Dif, IM1, IM2). The current mirror circuit (IM1, IM2) and a differential pair (Dif) derived the control signal for adjusting the quality factor (Q) from a resistor-connected further transistor pair (Inv7) connected to the control signal for adjusting the frequency (f). The quality factor of an electrically controllable filter arangement including similar transconductance circuits (G-3-9) is adjusted by means of the control signal generated by the control circuit via a buffer circuit (B) and a low-pass circuit (C3).

AB - An electrically controllable oscillator circuit (30) comprises two balanced transconductance circuits (G1, G2), each including transistor pairs arranged as inverters (Inv14) and as resistors (Inv5-6). The oscillation frequency (f) and the quality factor (Q) of the oscillator circuit (30) are controlled by means of a single control signal provided by a combined control circuit (Inv7, Dif, IM1, IM2). The current mirror circuit (IM1, IM2) and a differential pair (Dif) derived the control signal for adjusting the quality factor (Q) from a resistor-connected further transistor pair (Inv7) connected to the control signal for adjusting the frequency (f). The quality factor of an electrically controllable filter arangement including similar transconductance circuits (G-3-9) is adjusted by means of the control signal generated by the control circuit via a buffer circuit (B) and a low-pass circuit (C3).

KW - IR-102653

KW - EWI-27526

M3 - Patent

M1 - US005117205A

ER -