TY - JOUR
T1 - Electron density study of urea using TDS-corrected X-ray diffraction data
T2 - quantitative comparison of experimental theoretical results
AU - Zavodnik, Valery
AU - Stash, Adam
AU - Tsirelson, Vladimir
AU - Feil, Dirk
AU - de Vries, Roelof
PY - 1999
Y1 - 1999
N2 - The electron-density distribution in urea, CO(NH2)2, was studied by high-precision single-crystal X-ray diffraction analysis at 148 (1) K. An experimental correction for TDS was applied to the X-ray intensities. Rmerge(F2) = 0.015. The displacement parameters agree quite well with results from neutron diffraction. The deformation density was obtained by refinement of 145 unique low-order reflections with the Hansen & Coppens [Acta Cryst. (1978), A34, 909-921] multipole model, resulting in R = 0.008, wR = 0.011 and S = 1.09. Orbital calculations were carried out applying different potentials to account for correlation and exchange: Hartree-Fock (HF), density-functional theory/local density approximation (DFT/LDA) and density-functional theory/generalized gradient approximation (DFT/GGA). Extensive comparisons of the deformation densities and structure factors were made between the results of the various calculations and the outcome of the refinement. The agreement between the experimental and theoretical results is excellent, judged by the deformation density and the structure factors [wR(HF) = 0.023, wR(DFT) = 0.019] and fair with respect to the results of a topological analysis. Density-functional calculations seem to yield slightly better results than Hartree-Fock calculations.
AB - The electron-density distribution in urea, CO(NH2)2, was studied by high-precision single-crystal X-ray diffraction analysis at 148 (1) K. An experimental correction for TDS was applied to the X-ray intensities. Rmerge(F2) = 0.015. The displacement parameters agree quite well with results from neutron diffraction. The deformation density was obtained by refinement of 145 unique low-order reflections with the Hansen & Coppens [Acta Cryst. (1978), A34, 909-921] multipole model, resulting in R = 0.008, wR = 0.011 and S = 1.09. Orbital calculations were carried out applying different potentials to account for correlation and exchange: Hartree-Fock (HF), density-functional theory/local density approximation (DFT/LDA) and density-functional theory/generalized gradient approximation (DFT/GGA). Extensive comparisons of the deformation densities and structure factors were made between the results of the various calculations and the outcome of the refinement. The agreement between the experimental and theoretical results is excellent, judged by the deformation density and the structure factors [wR(HF) = 0.023, wR(DFT) = 0.019] and fair with respect to the results of a topological analysis. Density-functional calculations seem to yield slightly better results than Hartree-Fock calculations.
U2 - 10.1107/S0108768198005746
DO - 10.1107/S0108768198005746
M3 - Article
SN - 0108-7681
VL - B55
SP - 45
EP - 54
JO - Acta crystallographica. Section B: Structural science
JF - Acta crystallographica. Section B: Structural science
ER -