Embedded sensing: Integrating sensors in 3-D printed structures

Patrick Werkman, Marcel Welleweerd, Gerhard Jan Willem Wolterink, Bram Eijking, John Delamare, Remco Sanders, Gijs J.M. Krijnen*, Alexander Dijkshoorn

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    61 Citations (Scopus)
    849 Downloads (Pure)


    Current additive manufacturing allows for the implementation of electrically interrogated 3-D printed sensors. In this contribution various technologies, sensing principles and applications are discussed. We will give both an overview of some of the sensors presented in literature as well as some of our own recent work on 3-D printed sensors. The 3-D printing methods discussed include fused deposition modelling (FDM), using multi-material printing and poly-jetting. Materials discussed are mainly thermoplastics and include thermoplastic polyurethane (TPU), both un-doped as well as doped with carbon black, polylactic acid (PLA) and conductive inks. The sensors discussed are based on biopotential sensing, capacitive sensing and resistive sensing with applications in surface electromyography (sEMG) and mechanical and tactile sensing. As these sensors are based on plastics they are in general flexible and therefore open new possibilities for sensing in soft structures, e.g. as used in soft robotics. At the same time they show many of the characteristics of plastics like hysteresis, drift and non-linearity. We will argue that 3-D printing of embedded sensors opens up exciting new possibilities but also that these sensors require us to rethink how to exploit non-ideal sensors.

    Original languageEnglish
    Pages (from-to)169-181
    Number of pages13
    JournalJournal of Sensors and Sensor Systems
    Issue number1
    Publication statusPublished - 23 Mar 2018


    Dive into the research topics of 'Embedded sensing: Integrating sensors in 3-D printed structures'. Together they form a unique fingerprint.

    Cite this