Enabling Mobility in Heterogeneous Wireless Sensor Networks Cooperating with UAVs for Mission-Critical Management

Aysegul Erman-Tüysüz, Lodewijk van Hoesel, Paul Havinga, Jian Wu

    Research output: Contribution to journalArticleAcademicpeer-review

    26 Downloads (Pure)

    Abstract

    Wireless sensor networks have the promise of revolutionizing the capture, processing, and communication of mission-critical data for the use of first operational forces. Their low cost, low power, and size make it feasible to embed them into environment monitoring tags in critical care regions, first responders uniform gear, and data collector sinks attached to unmanned aerial vehicles. The ability to actively change the location of sensors can be used to mitigate some of the traditional problems associated with static sensor networks. On the other hand, sensor mobility brings its own challenges. These include challenges associated with in-network aggregation of sensor data, routing, and activity monitoring of responders. Moreover, all different mobility patterns (e.g., sink mobility, sensor mobility) have their special properties, so that each mobile device class needs its own approach. In this article, we present a platform which benefits from both static and mobile sensors and addresses these challenges. The system integrates WSNs, UAVs, and actuators into a disaster response setting, and provides facilities for event detection, autonomous network repair by UAVs, and quick response by integrated operational forces.
    Original languageEnglish
    Pages (from-to)38-46
    Number of pages9
    JournalIEEE wireless communications magazine
    Volume15
    Issue numberCFP08545-D/6
    DOIs
    Publication statusPublished - Dec 2008

    Fingerprint

    Dive into the research topics of 'Enabling Mobility in Heterogeneous Wireless Sensor Networks Cooperating with UAVs for Mission-Critical Management'. Together they form a unique fingerprint.

    Cite this