Energy and exergy evaluation of the evacuated tube solar collector using Cu2O/water nanofluid utilizing ANN methods

Gholamabbas Sadeghi* (Corresponding Author), Saeed Nazari, Mehran Ameri, Farzin Shama

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

37 Citations (Scopus)
1 Downloads (Pure)


In this paper, the improvement of the thermal characteristics of an evacuated tube solar collector for different volumetric flow rates of the fluid (10, 30 and 50 L/h) was experimentally enhanced by using copper oxide/water (Cu2O/W) nanofluid, and a parabolic concentrator. Moreover, the effect of different volume fractions of the utilized nanofluid on the energy and exergy efficiencies, convective heat transfer coefficient, Nusselt number, and useful heat gain of the solar collector was experimented. Finally, the accuracy of the experimentations was verified via Artificial Neural Networks (ANNs). The Multi-layer Perceptron (MLP) and Radial Basis Function (RBF) models were investigated to predict the performance of the constructed tubular collector, and their results were compared to one another. The results demonstrated that the MLP method can make a more accurate prediction of the collector performance than the RBF one. The highest error rate for the MLP model was less than that of the RBF model. It was also concluded that the increase in both the flow rate and concentration of the nanofluid leads to an increase in the thermal performance of the solar collector.
Original languageEnglish
Article number100578
JournalSustainable Energy Technologies and Assessments
Publication statusPublished - 2020
Externally publishedYes


  • Evacuated tube solar collector (ETSC)
  • Cu2O/W nanofluid
  • Energy efficiency
  • MLP and RBF models


Dive into the research topics of 'Energy and exergy evaluation of the evacuated tube solar collector using Cu<sub>2</sub>O/water nanofluid utilizing ANN methods'. Together they form a unique fingerprint.

Cite this