Energy Storage Technologies for Off-grid Houses

    Research output: ThesisPhD Thesis - Research UT, graduation UT

    51 Downloads (Pure)

    Abstract

    Off-grid houses have the potential to become an important asset for tomorrow’s electricity grid. Access to electricity inside homes is an important ingredient for creating quality of life. On the one hand, off-grid houses may enable such an access in regions without a proper grid infrastructure such as Sub-Saharan regions in Africa. On the other hand, due to the predicted consequences of a world-wide climate change, the vast majority of countries are making plans towards a massive integration of renewable energy; especially solar photovoltaics (PV) and wind turbines. The introduction of this huge amount of renewable energy leads to a lot of challenges. Off-grid houses may become an important asset which can support the integration of renewable energy as they tend to keep the generated energy locally.
    In this thesis we research off-grid houses, in particular (semi)off-grid or standalone houses that are capable of being electrically self-sustained for a certain period of time. These houses should depend electrically primarily on renewable sources (e.g. solar PV), used storage units (e.g. batteries) and backup power (e.g. fuel cells or the grid if it is present).
    We consider a setup for an off-grid house based on research on new storage technologies done by University of Twente and the company Dr Ten in the Netherlands. The setup focusses on electrical devices in a house and in particular a wastewater treatment unit, which are powered mainly by Solar PV combined with a Sea-Salt battery and a Glycerol Fuel Cell as backup power.
    In the first part of this thesis, the Sea-Salt battery and the Glycerol Fuel Cell are studied separately with regard to their electrochemical behaviour. In the second part, we study the sizing of Solar PV, the Sea-Salt battery and the Glycerol Fuel Cell for use in two cases: a standalone wastewater unit and for a house in the US and in NL.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Awarding Institution
    • University of Twente
    Supervisors/Advisors
    • Hurink, Johann L., Supervisor
    • Smit, Gerardus Johannes Maria, Supervisor
    Award date4 Oct 2019
    Place of PublicationEnschede
    Publisher
    Print ISBNs978-90-365-4826-7
    Electronic ISBNs978-90-365-4826-7
    DOIs
    Publication statusPublished - 4 Oct 2019

    Fingerprint

    Energy storage
    Fuel cells
    Glycerol
    Salts
    Electricity
    Climate change
    Wastewater treatment
    Wind turbines
    Wastewater
    Industry

    Cite this

    @phdthesis{26685127f3164449a45a7822c26ef468,
    title = "Energy Storage Technologies for Off-grid Houses",
    abstract = "Off-grid houses have the potential to become an important asset for tomorrow’s electricity grid. Access to electricity inside homes is an important ingredient for creating quality of life. On the one hand, off-grid houses may enable such an access in regions without a proper grid infrastructure such as Sub-Saharan regions in Africa. On the other hand, due to the predicted consequences of a world-wide climate change, the vast majority of countries are making plans towards a massive integration of renewable energy; especially solar photovoltaics (PV) and wind turbines. The introduction of this huge amount of renewable energy leads to a lot of challenges. Off-grid houses may become an important asset which can support the integration of renewable energy as they tend to keep the generated energy locally.In this thesis we research off-grid houses, in particular (semi)off-grid or standalone houses that are capable of being electrically self-sustained for a certain period of time. These houses should depend electrically primarily on renewable sources (e.g. solar PV), used storage units (e.g. batteries) and backup power (e.g. fuel cells or the grid if it is present). We consider a setup for an off-grid house based on research on new storage technologies done by University of Twente and the company Dr Ten in the Netherlands. The setup focusses on electrical devices in a house and in particular a wastewater treatment unit, which are powered mainly by Solar PV combined with a Sea-Salt battery and a Glycerol Fuel Cell as backup power. In the first part of this thesis, the Sea-Salt battery and the Glycerol Fuel Cell are studied separately with regard to their electrochemical behaviour. In the second part, we study the sizing of Solar PV, the Sea-Salt battery and the Glycerol Fuel Cell for use in two cases: a standalone wastewater unit and for a house in the US and in NL.",
    author = "{Quintero Pulido}, {Diego Fernando}",
    year = "2019",
    month = "10",
    day = "4",
    doi = "10.3990/1.9789036548267",
    language = "English",
    isbn = "978-90-365-4826-7",
    publisher = "University of Twente",
    address = "Netherlands",
    school = "University of Twente",

    }

    Energy Storage Technologies for Off-grid Houses. / Quintero Pulido, Diego Fernando.

    Enschede : University of Twente, 2019. 150 p.

    Research output: ThesisPhD Thesis - Research UT, graduation UT

    TY - THES

    T1 - Energy Storage Technologies for Off-grid Houses

    AU - Quintero Pulido, Diego Fernando

    PY - 2019/10/4

    Y1 - 2019/10/4

    N2 - Off-grid houses have the potential to become an important asset for tomorrow’s electricity grid. Access to electricity inside homes is an important ingredient for creating quality of life. On the one hand, off-grid houses may enable such an access in regions without a proper grid infrastructure such as Sub-Saharan regions in Africa. On the other hand, due to the predicted consequences of a world-wide climate change, the vast majority of countries are making plans towards a massive integration of renewable energy; especially solar photovoltaics (PV) and wind turbines. The introduction of this huge amount of renewable energy leads to a lot of challenges. Off-grid houses may become an important asset which can support the integration of renewable energy as they tend to keep the generated energy locally.In this thesis we research off-grid houses, in particular (semi)off-grid or standalone houses that are capable of being electrically self-sustained for a certain period of time. These houses should depend electrically primarily on renewable sources (e.g. solar PV), used storage units (e.g. batteries) and backup power (e.g. fuel cells or the grid if it is present). We consider a setup for an off-grid house based on research on new storage technologies done by University of Twente and the company Dr Ten in the Netherlands. The setup focusses on electrical devices in a house and in particular a wastewater treatment unit, which are powered mainly by Solar PV combined with a Sea-Salt battery and a Glycerol Fuel Cell as backup power. In the first part of this thesis, the Sea-Salt battery and the Glycerol Fuel Cell are studied separately with regard to their electrochemical behaviour. In the second part, we study the sizing of Solar PV, the Sea-Salt battery and the Glycerol Fuel Cell for use in two cases: a standalone wastewater unit and for a house in the US and in NL.

    AB - Off-grid houses have the potential to become an important asset for tomorrow’s electricity grid. Access to electricity inside homes is an important ingredient for creating quality of life. On the one hand, off-grid houses may enable such an access in regions without a proper grid infrastructure such as Sub-Saharan regions in Africa. On the other hand, due to the predicted consequences of a world-wide climate change, the vast majority of countries are making plans towards a massive integration of renewable energy; especially solar photovoltaics (PV) and wind turbines. The introduction of this huge amount of renewable energy leads to a lot of challenges. Off-grid houses may become an important asset which can support the integration of renewable energy as they tend to keep the generated energy locally.In this thesis we research off-grid houses, in particular (semi)off-grid or standalone houses that are capable of being electrically self-sustained for a certain period of time. These houses should depend electrically primarily on renewable sources (e.g. solar PV), used storage units (e.g. batteries) and backup power (e.g. fuel cells or the grid if it is present). We consider a setup for an off-grid house based on research on new storage technologies done by University of Twente and the company Dr Ten in the Netherlands. The setup focusses on electrical devices in a house and in particular a wastewater treatment unit, which are powered mainly by Solar PV combined with a Sea-Salt battery and a Glycerol Fuel Cell as backup power. In the first part of this thesis, the Sea-Salt battery and the Glycerol Fuel Cell are studied separately with regard to their electrochemical behaviour. In the second part, we study the sizing of Solar PV, the Sea-Salt battery and the Glycerol Fuel Cell for use in two cases: a standalone wastewater unit and for a house in the US and in NL.

    U2 - 10.3990/1.9789036548267

    DO - 10.3990/1.9789036548267

    M3 - PhD Thesis - Research UT, graduation UT

    SN - 978-90-365-4826-7

    PB - University of Twente

    CY - Enschede

    ER -