Engineering ferroelectric switching dynamics

Anirban Ghosh

Research output: ThesisPhD Thesis - Research UT, graduation UT

546 Downloads (Pure)

Abstract

Modern computing based on Von Neumann architecture and storage devices are based on detecting a change in the state of a material. Hence, bistable materials e.g. ferromagnets and ferroelectrics become a natural choice to achieve this objective in real devices. Since these materials possess two stable states which can be switched from one to another and are also non-volatile in nature they can be used both as a memory element and for non-volatile RAM. However, with the demand for realizing brain inspired computing driven by applications beyond what is achievable by conventional computers e.g. pattern recognition etc. novel material properties need to be explored. Human brain unlike computing devices are analog in nature and dynamically processes data. Hence analog computers in principle can overcome the limitations of digital computers. In order to realize brain like computation in real devices one would need to create multiple switchable non-volatile states. Switching in ferroelectric thin films takes place via heterogeneous nucleation (at the ferroelectric - electrode interface) and subsequent growth of domains. In this thesis it is shown how we can create multiple states in a capacitor structure that comprises ferroelectric PZT by controlling the switching through the manipulating the statistics of the nucleation energy. We achieved this by controlling the local electric field at the ferroelectric-electrode interface by coupling the switchable polarization of PZT and the non-switchable polarization of ZnO.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • University of Twente
Supervisors/Advisors
  • Rijnders, Guus, Supervisor
  • Koster, Gertjan, Advisor
Award date23 Sept 2016
Place of PublicationEnschede
Publisher
Print ISBNs978-90-365-4196-1
DOIs
Publication statusPublished - 23 Sept 2016

Keywords

  • METIS-318105
  • IR-101552

Fingerprint

Dive into the research topics of 'Engineering ferroelectric switching dynamics'. Together they form a unique fingerprint.

Cite this