Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization

Nicolás Aranda-Pérez, M. Pilar Ruiz, Javier Echave, Jimmy Faria*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

24 Citations (Scopus)

Abstract

Stabilization of oxygen vacancies on metal oxides (e.g. TiO2) in liquid phase is an important challenge for the utilization of these materials in artificial photosynthesis, environmental remediation and biomass conversion. To create materials with low-energy barriers for vacancies formation and high stability in aqueous environments, we have developed partially hydrophobic (contact angle ≥90°) TiO2 rutile decorated with Ru nanoparticles. Negligible catalytic activity was observed when hydrophilic (contact angle 51°) 5 wt.% Ru/TiO2 anatase was utilized in hot liquid water, while amphiphilic 5 wt.% Ru/TiO2 rutile (contact angle ∼90°) retained its catalytic activity. Fine-control of crystalline structure (lattice matching) of TiO2 and Ru allowed us to accelerate the rate of reaction, while the high surface hydrophobicity of the support enabled the stabilization of Ti3+ cations in aqueous and organic environments.

Original languageEnglish
Pages (from-to)106-118
Number of pages13
JournalApplied catalysis A: general
Volume531
DOIs
Publication statusPublished - 5 Feb 2017
Externally publishedYes

Keywords

  • Hydrophobicity
  • Hydrothermal stability
  • Ketonization
  • Titanium dioxide

Fingerprint

Dive into the research topics of 'Enhanced activity and stability of Ru-TiO<sub>2</sub> rutile for liquid phase ketonization'. Together they form a unique fingerprint.

Cite this