TY - JOUR
T1 - Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks
AU - Liang, Jia
AU - Guo, Zhengchao
AU - Timmerman, Aimée
AU - Grijpma, Dirk
AU - Poot, André
PY - 2019/1/4
Y1 - 2019/1/4
N2 - Although synthetic polymers may have suitable physicochemical properties for biomedical applications, biological properties are generally lacking. Poly(ethylene glycol) (PEG) is a frequently used polymer for the preparation of hydrogels. Due to its hydrophilic character, however, cellular interactions with PEG hydrogels are minimal or absent. To improve the cell adhesive properties of PEG hydrogels, we developed hybrid hydrogels based on PEG and the natural polymer gelatin. PEG dimethacrylate (PEG-dMA) and gelatin methacrylate (GelMA) macromers were prepared, which were photo-crosslinked in water in different ratios (75:25, 50:50 and 25:75% (v/v)). The obtained hybrid networks showed macrophase separation, which could be prevented by photo-crosslinking in 0.5% (v/v) acetic acid in water. The toughness of 50:50% PEG-dMA:GelMA hydrogels prepared in 0.5% acetic acid was 2.5 times higher than that of single polymer hydrogels made of PEG-dMA or GelMA. Hybrid hydrogels crosslinked in 0.5% acetic acid supported the proliferation of human mesenchymal stem cells to the same extent as compared to 100% gelatin hydrogel, whereas the cells did not proliferate on 100% PEG hydrogel. In conclusion, our results show that both the cell adhesive and mechanical properties of a photo-crosslinked PEG network can be improved by incorporation of gelatin in the network.
AB - Although synthetic polymers may have suitable physicochemical properties for biomedical applications, biological properties are generally lacking. Poly(ethylene glycol) (PEG) is a frequently used polymer for the preparation of hydrogels. Due to its hydrophilic character, however, cellular interactions with PEG hydrogels are minimal or absent. To improve the cell adhesive properties of PEG hydrogels, we developed hybrid hydrogels based on PEG and the natural polymer gelatin. PEG dimethacrylate (PEG-dMA) and gelatin methacrylate (GelMA) macromers were prepared, which were photo-crosslinked in water in different ratios (75:25, 50:50 and 25:75% (v/v)). The obtained hybrid networks showed macrophase separation, which could be prevented by photo-crosslinking in 0.5% (v/v) acetic acid in water. The toughness of 50:50% PEG-dMA:GelMA hydrogels prepared in 0.5% acetic acid was 2.5 times higher than that of single polymer hydrogels made of PEG-dMA or GelMA. Hybrid hydrogels crosslinked in 0.5% acetic acid supported the proliferation of human mesenchymal stem cells to the same extent as compared to 100% gelatin hydrogel, whereas the cells did not proliferate on 100% PEG hydrogel. In conclusion, our results show that both the cell adhesive and mechanical properties of a photo-crosslinked PEG network can be improved by incorporation of gelatin in the network.
KW - methacrylated PEG
KW - methacrylated gelatin
KW - photo-crosslinking
KW - hydrogel
UR - http://www.scopus.com/inward/record.url?scp=85059500084&partnerID=8YFLogxK
U2 - 10.1088/1748-605X/aaf31b
DO - 10.1088/1748-605X/aaf31b
M3 - Article
C2 - 30524039
AN - SCOPUS:85059500084
VL - 14
JO - Biomedical materials
JF - Biomedical materials
SN - 1748-6041
IS - 2
M1 - 024102
ER -