Abstract
Stakeholders in the pavement sector have been seeking new engineering solutions to move towards more sustainable pavement management practices. The general approaches for improving pavement sustainability include, among others, reducing virgin binder and virgin aggregate content in HMA and WMA mixtures, reducing energy consumed and emissions generated in mixtures production, applying in-place recycling techniques, and implementing preventive treatments. In this study, a comprehensive and integrated pavement life cycle costing- life cycle assessment model was developed to investigate, from a full life cycle perspective, the extent to which several pavement engineering solutions, namely hot in-plant recycling mixtures, WMA, cold central plant recycling and preventive treatments, are efficient in improving the environmental and economic dimensions of pavement infrastructure sustainability, when applied either separately or in combination, in the construction and management of a road pavement section located in Virginia, USA. Furthermore, in order to determine the preference order of alternative scenarios, a multicriteria decision analysis method was applied. The results showed that the implementation of a recycling-based maintenance and rehabilitation strategy where the asphalt mixtures are of type hot-mix asphalt containing 30% RAP, best suits the multidimensional and conflicting interests of decision-makers. This outcome was found to be robust even when different design and performance scenarios of the mixtures and type of treatments are considered.
Original language | English |
---|---|
Pages (from-to) | 15-31 |
Number of pages | 17 |
Journal | Resources, conservation and recycling |
Volume | 116 |
DOIs | |
Publication status | Published - 1 Jan 2017 |
Externally published | Yes |
Keywords
- In-place recycling techniques
- Life cycle assessment
- Life cycle costing
- Multi-criteria decision analysis
- Sustainable pavement construction and management