TY - JOUR
T1 - Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat - 7 ETM+ data
AU - Basuki, T.M.
AU - Skidmore, A.K.
AU - Hussin, Y.A.
AU - van Duren, I.C.
PY - 2013
Y1 - 2013
N2 - Integration of multisensor data provides the opportunity to explore benefits emanating from different data sources. A fusion between fraction images derived from spectral mixture analysis of Landsat-7 ETM+ and phased array L-band synthetic aperture radar (PALSAR) is introduced. The aim of this fusion is to improve the estimation accuracy of above-ground biomass (AGB) in lowland mixed dipterocarp forest. Spectral mixture analysis was applied to decompose a mixture of spectral components of Landsat-7 ETM+ into vegetation, soil, and shade fractions. These fraction images were integrated with PALSAR data using the discrete wavelet transform (DWT) and Brovey transform. As a comparison, spectral reflectance of Landsat-7 ETM+ was fused directly with PALSAR data. Backscatter of horizontal–horizontal and horizontal–vertical polarizations was also used to estimate AGB. Forest inventory was carried out in 77 randomly distributed plots, the data being used for either model development or validation. A local allometric equation was applied to calculate AGB per plot. Regression models were developed by integrating field measurements of 50 sample plots with remotely sensed data, e.g. fraction images, reflectance of Landsat-7 ETM+, and PALSAR data. The models developed were validated using 27 independent sample plots. The results showed that not all fused images significantly improved the accuracy of AGB estimation. The model based on Brovey transform using the reflectance of Landsat-7ETM+ and PALSAR produced an R2 of only 0.03–0.10. By contrast, fusion between PALSAR data and fraction images using Brovey transform improved the accuracy of R2 to 0.33–0.46. Further improvement in the accuracy of estimating AGB was observed when DWT was applied to integrate PALSAR with the reflectance of Landsat-7ETM+ (R2 = 0.69–0.72) and PALSAR with fraction images (R2 = 0.70–0.75).
AB - Integration of multisensor data provides the opportunity to explore benefits emanating from different data sources. A fusion between fraction images derived from spectral mixture analysis of Landsat-7 ETM+ and phased array L-band synthetic aperture radar (PALSAR) is introduced. The aim of this fusion is to improve the estimation accuracy of above-ground biomass (AGB) in lowland mixed dipterocarp forest. Spectral mixture analysis was applied to decompose a mixture of spectral components of Landsat-7 ETM+ into vegetation, soil, and shade fractions. These fraction images were integrated with PALSAR data using the discrete wavelet transform (DWT) and Brovey transform. As a comparison, spectral reflectance of Landsat-7 ETM+ was fused directly with PALSAR data. Backscatter of horizontal–horizontal and horizontal–vertical polarizations was also used to estimate AGB. Forest inventory was carried out in 77 randomly distributed plots, the data being used for either model development or validation. A local allometric equation was applied to calculate AGB per plot. Regression models were developed by integrating field measurements of 50 sample plots with remotely sensed data, e.g. fraction images, reflectance of Landsat-7 ETM+, and PALSAR data. The models developed were validated using 27 independent sample plots. The results showed that not all fused images significantly improved the accuracy of AGB estimation. The model based on Brovey transform using the reflectance of Landsat-7ETM+ and PALSAR produced an R2 of only 0.03–0.10. By contrast, fusion between PALSAR data and fraction images using Brovey transform improved the accuracy of R2 to 0.33–0.46. Further improvement in the accuracy of estimating AGB was observed when DWT was applied to integrate PALSAR with the reflectance of Landsat-7ETM+ (R2 = 0.69–0.72) and PALSAR with fraction images (R2 = 0.70–0.75).
KW - ITC-ISI-JOURNAL-ARTICLE
KW - 2023 OA procedure
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2013/isi/skidmore_est.pdf
U2 - 10.1080/01431161.2013.777486
DO - 10.1080/01431161.2013.777486
M3 - Article
SN - 0143-1161
VL - 34
SP - 4871
EP - 4888
JO - International journal of remote sensing
JF - International journal of remote sensing
IS - 13
ER -