TY - JOUR
T1 - Evaluation of Dynamic Triple Modular Redundancy in an Interleaved-Multi-Threading RISC-V Core
AU - Barbirotta, Marcello
AU - Cheikh, Abdallah
AU - Mastrandrea, Antonio
AU - Menichelli, Francesco
AU - Ottavi, Marco
AU - Olivieri, Mauro
PY - 2022/12/28
Y1 - 2022/12/28
N2 - Functional safety is a key requirement in several application domains in which microprocessors are an essential part. A number of redundancy techniques have been developed with the common purpose of protecting circuits against single event upset (SEU) faults. In microprocessors, functional redundancy may be achieved through multi-core or simultaneous-multi-threading architectures, with techniques that are broadly classifiable as Double Modular Redundancy (DMR) and Triple Modular Redundancy (TMR), involving the duplication or triplication of architecture units, respectively. RISC-V plays an interesting role in this context for its inherent extendability and the availability of open-source microarchitecture designs. In this work, we present a novel way to exploit the advantages of both DMR and TMR techniques in an Interleaved-Multi-Threading (IMT) microprocessor architecture, leveraging its replicated threads for redundancy, and obtaining a system that can dynamically switch from DMR to TMR in the case of faults. We demonstrated the approach for a specific family of RISC-V cores, modifying the microarchitecture and proving its effectiveness with an extensive RTL fault-injection simulation campaign.
AB - Functional safety is a key requirement in several application domains in which microprocessors are an essential part. A number of redundancy techniques have been developed with the common purpose of protecting circuits against single event upset (SEU) faults. In microprocessors, functional redundancy may be achieved through multi-core or simultaneous-multi-threading architectures, with techniques that are broadly classifiable as Double Modular Redundancy (DMR) and Triple Modular Redundancy (TMR), involving the duplication or triplication of architecture units, respectively. RISC-V plays an interesting role in this context for its inherent extendability and the availability of open-source microarchitecture designs. In this work, we present a novel way to exploit the advantages of both DMR and TMR techniques in an Interleaved-Multi-Threading (IMT) microprocessor architecture, leveraging its replicated threads for redundancy, and obtaining a system that can dynamically switch from DMR to TMR in the case of faults. We demonstrated the approach for a specific family of RISC-V cores, modifying the microarchitecture and proving its effectiveness with an extensive RTL fault-injection simulation campaign.
KW - UT-Gold-D
U2 - 10.3390/jlpea13010002
DO - 10.3390/jlpea13010002
M3 - Article
VL - 13
JO - Journal of Low Power Electronics and Applications
JF - Journal of Low Power Electronics and Applications
SN - 2079-9268
IS - 1
ER -