Evaluation of isotopic boron (11B) for the fabrication of low activation Mg11B2 superconductor for next generation fusion magnets

Hyunseock Jie, Vladimir Luzin*, Mukter Zaman, Anvar Valiyaparambil Abdulsalam, Keun Hwa Chae, Hyung il Choi, Vladimir Levchenko, Arend Nijhuis, Jung H. Kim, Mislav Mustapić, Shi Xue Dou, Yusuke Yamauchi, Aslam Khan, Md Shahriar A. Hossain

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In this study, we analyze the properties of boron isotope (11B)-rich powders from three different sources, that is, American, Cambridge, and Pavezyum, to fabricate the bulk Mg11B2 superconductors and evaluate their superconducting properties. While 11B-rich powder is an essential precursor to fabricate Mg11B2 superconductors for fusion magnet applications, the properties of the 11B powder turned out to be critical to determine the quality of the final superconducting product. Therefore, appropriate control of processing conditions is needed to comply with the requirements of the nuclear fusion application. Analysis of the B isotope ratio by accelerator mass spectroscopy and neutron transmission revealed that all three types of powder are enriched with 11B to better than 99 at % quality. In addition, Pavezyum's 11B shows the lowest crystallinity and smallest crystalline domain size as evidenced by the high-resolution X-ray diffractometer and scanning electron microscopy. The chemical states of the boron isotope investigated with near edge X-ray absorption fine structure spectroscopy and X-ray photoemission spectroscopy also reveals that Pavezyum boron has amorphous structure. Mg11B2 bulks and multi-filamentary (12-filament) wires have been manufactured, sintered at different temperatures and characterized via the transport critical current density. The wire with Pavezyum 11B shows three times higher current carrying capacity at a particular magnetic field compared to the wire using Cambridge 11B and hence, Pavezyum 11B boron has the potential for manufacturing fusion grade Mg11B2 based magnets. The results of this study demonstrated that Boron powders with higher purity, smaller grain size and lower crystallinity are critical for improving the superconducting and electronic properties of Mg11B2 samples fabricated from the powder. Thus, the low-neutron-activation Mg11B2 is possibly an affordable and technically viable candidate to replace NbTi superconductors in the low field poloidal field and correction coils for the next-generation fusion reactors.

Original languageEnglish
Pages (from-to)5488-5495
Number of pages8
JournalJournal of the American Ceramic Society
Volume103
Issue number10
Early online date13 Apr 2020
DOIs
Publication statusPublished - 1 Oct 2020

Keywords

  • boron isotope
  • critical current density
  • magnesium diboride
  • superconductors

Fingerprint Dive into the research topics of 'Evaluation of isotopic boron (<sup>11</sup>B) for the fabrication of low activation Mg<sup>11</sup>B<sub>2</sub> superconductor for next generation fusion magnets'. Together they form a unique fingerprint.

Cite this