### Abstract

Original language | English |
---|---|

Title of host publication | Mathematical Control Theory I |

Editors | M. Kanat Camlibel, R.P. Ramkrishna Pasumarthy, A. Agung Julius, Jacquelien M.A. Scherpen |

Place of Publication | London |

Publisher | Springer |

Pages | 343-348 |

Number of pages | 6 |

ISBN (Print) | 978-3-319-20987-6 |

DOIs | |

Publication status | Published - 14 Jul 2015 |

### Publication series

Name | Lecture Notes in Control and Information Sciences |
---|---|

Publisher | Springer Verlag |

Number | 461 |

Volume | 461 |

ISSN (Print) | 0170-8643 |

### Fingerprint

### Keywords

- MSC-53C38
- MSC-34H05
- METIS-314962
- IR-98399
- EWI-26283

### Cite this

*Mathematical Control Theory I*(pp. 343-348). (Lecture Notes in Control and Information Sciences; Vol. 461, No. 461). London: Springer. https://doi.org/10.1007/978-3-319-20988-3_18

}

*Mathematical Control Theory I.*Lecture Notes in Control and Information Sciences, no. 461, vol. 461, Springer, London, pp. 343-348. https://doi.org/10.1007/978-3-319-20988-3_18

**Examples on Stability for Infinite-Dimensional Systems.** / Zwart, Heiko J.

Research output: Chapter in Book/Report/Conference proceeding › Chapter › Academic › peer-review

TY - CHAP

T1 - Examples on Stability for Infinite-Dimensional Systems

AU - Zwart, Heiko J.

N1 - 10.1007/978-3-319-20988-3_18

PY - 2015/7/14

Y1 - 2015/7/14

N2 - By means of examples, we study stability of infinite-dimensional linear and nonlinear systems. First we show that having a (strict) Lyapunov function does not imply asymptotic stability, even not for linear systems. Second, we show that to conclude (local) exponential stability from the linearization, care must be taken how the linearization is obtained.

AB - By means of examples, we study stability of infinite-dimensional linear and nonlinear systems. First we show that having a (strict) Lyapunov function does not imply asymptotic stability, even not for linear systems. Second, we show that to conclude (local) exponential stability from the linearization, care must be taken how the linearization is obtained.

KW - MSC-53C38

KW - MSC-34H05

KW - METIS-314962

KW - IR-98399

KW - EWI-26283

U2 - 10.1007/978-3-319-20988-3_18

DO - 10.1007/978-3-319-20988-3_18

M3 - Chapter

SN - 978-3-319-20987-6

T3 - Lecture Notes in Control and Information Sciences

SP - 343

EP - 348

BT - Mathematical Control Theory I

A2 - Kanat Camlibel, M.

A2 - Ramkrishna Pasumarthy, R.P.

A2 - Agung Julius, A.

A2 - Scherpen, Jacquelien M.A.

PB - Springer

CY - London

ER -