TY - JOUR
T1 - Experimental and Numerical Study of the Effect of Model Geometric Distortion on Laboratory Modeling of Urban Flooding
AU - Li, Xuefang
AU - Kitsikoudis, Vasileios
AU - Mignot, Emmanuel
AU - Archambeau, Pierre
AU - Pirotton, Michel
AU - Dewals, Benjamin
AU - Erpicum, Sébastien
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Laboratory studies of urban flooding often use geometrically distorted scale models due to the multi-scale nature of these specific flows. The possible bias induced by geometric distortion has never been thoroughly investigated with dedicated laboratory experiments. In this study, we combine experimental and computational modeling to systematically assess the influence of the distortion ratio, that is, the ratio of horizontal to vertical scale factors, on upscaled flow depths and discharge partition between streets. Three flow configurations were considered: a street junction, a street bifurcation, and a small synthetic urban district. When the distortion ratio is varied up to a value of about 5, the upscaled flow depths at the model inlets decrease monotonously and the flow discharge in the branch that conveys the largest portion of the flow is greatly enhanced. For equal flow depths at the model outlets and depending on the configuration, the distortion effect induces a variation of the upstream flow depth approximately from ∼4% to ∼17% and a change in outlet discharge partition up to 24 percentage points. For a distortion ratio above 5, both upscaled upstream flow depths and outlet discharge partition tend to stabilize asymptotically. Our study indicates the direction and magnitude of the bias induced by geometric distortion for a broad range of flow cases, which is valuable for offsetting these effects in practical laboratory studies of urban flooding.
AB - Laboratory studies of urban flooding often use geometrically distorted scale models due to the multi-scale nature of these specific flows. The possible bias induced by geometric distortion has never been thoroughly investigated with dedicated laboratory experiments. In this study, we combine experimental and computational modeling to systematically assess the influence of the distortion ratio, that is, the ratio of horizontal to vertical scale factors, on upscaled flow depths and discharge partition between streets. Three flow configurations were considered: a street junction, a street bifurcation, and a small synthetic urban district. When the distortion ratio is varied up to a value of about 5, the upscaled flow depths at the model inlets decrease monotonously and the flow discharge in the branch that conveys the largest portion of the flow is greatly enhanced. For equal flow depths at the model outlets and depending on the configuration, the distortion effect induces a variation of the upstream flow depth approximately from ∼4% to ∼17% and a change in outlet discharge partition up to 24 percentage points. For a distortion ratio above 5, both upscaled upstream flow depths and outlet discharge partition tend to stabilize asymptotically. Our study indicates the direction and magnitude of the bias induced by geometric distortion for a broad range of flow cases, which is valuable for offsetting these effects in practical laboratory studies of urban flooding.
KW - 2022 OA procedure
U2 - 10.1029/2021WR029666
DO - 10.1029/2021WR029666
M3 - Article
SN - 0043-1397
VL - 57
JO - Water resources research
JF - Water resources research
IS - 10
M1 - e2021WR029666
ER -