Abstract
Purpose
In this paper, we present a system capable of automatically steering bevel tip flexible needles under ultrasound guidance toward stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to track the needle tip during the procedure.
Methods
Our system uses a fast sampling-based path planner to compute and periodically update a feasible path to the target that avoids obstacles. We then use a novel control algorithm to steer the needle along the path in a manner that reduces the number of needle rotations, thus reducing tissue damage. We present experimental results for needle insertion procedures for both stationary and moving targets and obstacles for up to 90 mm of needle insertion.
Results
We obtained a mean targeting error of 0.32±0.10 and 0.38±0.19 mm in gelatin-based phantom and biological tissue, respectively.
Conclusions
The achieved submillimeter accuracy suggests that our approach is sufficient to target the smallest lesions ( ϕ 2 mm) that can be detected using state-of-the-art ultrasound imaging systems.
Original language | Undefined |
---|---|
Pages (from-to) | 931-939 |
Number of pages | 9 |
Journal | International journal of computer assisted radiology and surgery |
Volume | 9 |
Issue number | 6 |
DOIs | |
Publication status | Published - Nov 2014 |
Keywords
- Computer-assisted surgery
- Minimally invasive surgery
- Image-guided control
- Needle–tissue interactions
- IR-89830
- Ultrasound
- EWI-24587
- METIS-304026
- Medical robotsand systems