Abstract
Normal-ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) and relaxor-ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin-films are deposited on SrRuO3-covered SrTiO3/Si substrates. An ultrahigh recoverable energy-storage density (Ureco) of 68.2 J/cm3 and energy efficiency (η) of 80.4% are achieved in the PLZT thin-films under a large breakdown strength (EBD) of 3600 kV/cm. These values are much lower in the PZT thin-films (Ureco of 10.3 J/cm3 and η of 62.4% at EBD of 1000 kV/cm). In addition, the remanent polarization (Pr) and dielectric-constant are also investigated to evaluate the breakdown strength in thin-films. Polar nano-regions (PNRs) are created in the PLZT thin-films to enable relaxor behavior and lead to slim polarization loops along with very small Pr. The excellent operating temperature of energy-storage performance and also the breakdown strength obtained in the PLZT thin-films are mainly ascribed to the presence of PNRs. Moreover, both PZT and PLZT thin-films exhibit superior performance up to 1010 times of charge-discharge cycling.
Original language | English |
---|---|
Pages (from-to) | 1040-1045 |
Number of pages | 6 |
Journal | Current Applied Physics |
Volume | 19 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 Sept 2019 |
Keywords
- Breakdown strength
- Energy efficiency
- Energy-storage density
- Polar nano-regions
- Relaxor ferroelectric
- 22/4 OA procedure