TY - JOUR
T1 - Expression of leukocyte adhesion molecules by endothelial cells seeded on various polymer surfaces
AU - Imbert, E.
AU - Imbert, E.
AU - Poot, Andreas A.
AU - Figdor, Carl
AU - Feijen, Jan
PY - 2001
Y1 - 2001
N2 - Although endothelial cell seeding in small-diameter vascular prostheses significantly improves graft survival, the detachment of adherent endothelial cells after the restoration of circulation remains one of the major obstacles. Because in vivo experiments indicate that leukocyte infiltration is involved in endothelial cell loss, we hypothesize that seeded endothelial cells become activated and express leukocyte adhesion molecules and cytokines because of an interaction with the underlying polymer surface. The aim of this study was to investigate the expression of the leukocyte adhesion molecules ICAM-1, VCAM-1, PECAM-1, and E-selectin by cultured human umbilical vein endothelial cells (HUVECs) and human adipose microvascular endothelial cells (HAMVECs). The cells were seeded on tissue culture poly(styrene) and the vascular graft materials Dacron and Teflon. The results of this study indicate that the expression of leukocyte adhesion molecules by cultured endothelial cells is mainly affected by the endothelial cell origin, that is, umbilical vein or adipose tissue. Expressions of both ICAM-1 and E-selectin by HUVECs and HAMVECs are characterized by the presence of two cell populations with distinct levels of expression. With respect to endothelial cell seeding in vascular prostheses, the increased expression of E-selectin by microvascular endothelial cells deserves further attention.
AB - Although endothelial cell seeding in small-diameter vascular prostheses significantly improves graft survival, the detachment of adherent endothelial cells after the restoration of circulation remains one of the major obstacles. Because in vivo experiments indicate that leukocyte infiltration is involved in endothelial cell loss, we hypothesize that seeded endothelial cells become activated and express leukocyte adhesion molecules and cytokines because of an interaction with the underlying polymer surface. The aim of this study was to investigate the expression of the leukocyte adhesion molecules ICAM-1, VCAM-1, PECAM-1, and E-selectin by cultured human umbilical vein endothelial cells (HUVECs) and human adipose microvascular endothelial cells (HAMVECs). The cells were seeded on tissue culture poly(styrene) and the vascular graft materials Dacron and Teflon. The results of this study indicate that the expression of leukocyte adhesion molecules by cultured endothelial cells is mainly affected by the endothelial cell origin, that is, umbilical vein or adipose tissue. Expressions of both ICAM-1 and E-selectin by HUVECs and HAMVECs are characterized by the presence of two cell populations with distinct levels of expression. With respect to endothelial cell seeding in vascular prostheses, the increased expression of E-selectin by microvascular endothelial cells deserves further attention.
KW - IR-71814
KW - METIS-204839
U2 - 10.1002/1097-4636(20010905)56:3<376::AID-JBM1106>3.0.CO;2-R
DO - 10.1002/1097-4636(20010905)56:3<376::AID-JBM1106>3.0.CO;2-R
M3 - Article
VL - 56
SP - 376
EP - 381
JO - Journal of biomedical materials research
JF - Journal of biomedical materials research
SN - 0021-9304
IS - 3
ER -