TY - JOUR
T1 - Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission
AU - Chong, Kai Leong
AU - Ng, Chong Shen
AU - Hori, Naoki
AU - Yang, Rui
AU - Verzicco, Roberto
AU - Lohse, Detlef
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/1/19
Y1 - 2021/1/19
N2 - To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10 μm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2 m advection range of the respiratory droplets within 1 sec. Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones. Our findings provide the starting points for larger parameter studies and may be instructive for developing strategies on optimizing ventilation and indoor humidity control. Such strategies are key in mitigating the COVID-19 pandemic in the present autumn and upcoming winter.
AB - To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10 μm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2 m advection range of the respiratory droplets within 1 sec. Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones. Our findings provide the starting points for larger parameter studies and may be instructive for developing strategies on optimizing ventilation and indoor humidity control. Such strategies are key in mitigating the COVID-19 pandemic in the present autumn and upcoming winter.
UR - http://www.scopus.com/inward/record.url?scp=85099879445&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.126.034502
DO - 10.1103/PhysRevLett.126.034502
M3 - Article
AN - SCOPUS:85099879445
SN - 0031-9007
VL - 126
JO - Physical review letters
JF - Physical review letters
IS - 3
M1 - 034502
ER -