Abstract
The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from sel-enides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.
Original language | English |
---|---|
Article number | eadh3412 |
Number of pages | 12 |
Journal | Science advances |
Volume | 9 |
Issue number | 42 |
DOIs | |
Publication status | Published - 20 Oct 2023 |