Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001)

Research output: Contribution to conferencePosterOther research output

Abstract

EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry and wet cleaning of the contaminated mirror surface, which must be performed outside the vacuum chamber. Thus, current cleaning techniques are not desirable for the sake of the productivity. Controlling these processes at multilayer mirror surfaces under EUV conditions can be very beneficial for ASML and its partners. Our goal is to understand these processes and apply newly obtained knowledge in maintaining mirror performance and extending its lifetime. Irradiations of EUV optics with 13.5 nm EUV photons, as well as the generated secondary electrons, drive chemical reactions in the presence of molecular and atomic species, in which the properties of the surface also play an important role. Our investigation employs temperature programmed desorption, and reflection-absorption infrared spectroscopy techniques in a UHV chamber to characterize the binding and chemical composition of molecular adlayers on a Ru(0001) surface. The photochemical reactions of water and deuterium water (D2O) were studied. We found that the dissociation of water on Ru is enhanced by EUV radiation, which leads to oxidation of the Ru surface. The oxidation of the Ru single crystal surface can be considered as the first step of oxidizing a Ru metal thin film, of which the next step is accumulation of oxygen and diffusion into the sub surface layers. The kinetics of oxidation is influenced by a number of factors. By comparing the reactions using water and D2O any isotope effects can be revealed. To understand the dependency on the morphology of the metal substrate, we carefully modify the surface structure by roughening the surface with the aid of ion bombardment. To mimic the polycrystalline nature of the Ru capped multilayer surface, we optimize the ion sputtering and annealing parameters to reproduce the spatial features we observe on Ru capped multilayers using AFM and STM. Furthermore, the dependence of the EUV induced reactions of water on the presence of co-adsorbed species as oxygen, hydrogen or carbon is investigated. This approach will lead to a set of reaction cross sections for EUV induced oxidation as a function of surface morphology, oxygen coverage, hydrogen coverage and carbon coverage.
Original languageUndefined
Pages-
Publication statusPublished - 20 Jun 2013
Event14th ASML Technology Conference 2013 - Hotel NH Eindhoven Conference Centre Koningshof, Eindhoven, Netherlands
Duration: 20 Jun 201320 Jun 2013
Conference number: 14

Conference

Conference14th ASML Technology Conference 2013
CountryNetherlands
CityEindhoven
Period20/06/1320/06/13

Keywords

  • METIS-299675

Cite this

Liu, F., Sturm, J. M., Lee, C. J., & Bijkerk, F. (2013). Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001). -. Poster session presented at 14th ASML Technology Conference 2013, Eindhoven, Netherlands.
Liu, Feng ; Sturm, Jacobus Marinus ; Lee, Christopher James ; Bijkerk, Frederik. / Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001). Poster session presented at 14th ASML Technology Conference 2013, Eindhoven, Netherlands.
@conference{5f7952b13b274d00ba39ffe9860e9aa1,
title = "Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001)",
abstract = "EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry and wet cleaning of the contaminated mirror surface, which must be performed outside the vacuum chamber. Thus, current cleaning techniques are not desirable for the sake of the productivity. Controlling these processes at multilayer mirror surfaces under EUV conditions can be very beneficial for ASML and its partners. Our goal is to understand these processes and apply newly obtained knowledge in maintaining mirror performance and extending its lifetime. Irradiations of EUV optics with 13.5 nm EUV photons, as well as the generated secondary electrons, drive chemical reactions in the presence of molecular and atomic species, in which the properties of the surface also play an important role. Our investigation employs temperature programmed desorption, and reflection-absorption infrared spectroscopy techniques in a UHV chamber to characterize the binding and chemical composition of molecular adlayers on a Ru(0001) surface. The photochemical reactions of water and deuterium water (D2O) were studied. We found that the dissociation of water on Ru is enhanced by EUV radiation, which leads to oxidation of the Ru surface. The oxidation of the Ru single crystal surface can be considered as the first step of oxidizing a Ru metal thin film, of which the next step is accumulation of oxygen and diffusion into the sub surface layers. The kinetics of oxidation is influenced by a number of factors. By comparing the reactions using water and D2O any isotope effects can be revealed. To understand the dependency on the morphology of the metal substrate, we carefully modify the surface structure by roughening the surface with the aid of ion bombardment. To mimic the polycrystalline nature of the Ru capped multilayer surface, we optimize the ion sputtering and annealing parameters to reproduce the spatial features we observe on Ru capped multilayers using AFM and STM. Furthermore, the dependence of the EUV induced reactions of water on the presence of co-adsorbed species as oxygen, hydrogen or carbon is investigated. This approach will lead to a set of reaction cross sections for EUV induced oxidation as a function of surface morphology, oxygen coverage, hydrogen coverage and carbon coverage.",
keywords = "METIS-299675",
author = "Feng Liu and Sturm, {Jacobus Marinus} and Lee, {Christopher James} and Frederik Bijkerk",
year = "2013",
month = "6",
day = "20",
language = "Undefined",
pages = "--",
note = "null ; Conference date: 20-06-2013 Through 20-06-2013",

}

Liu, F, Sturm, JM, Lee, CJ & Bijkerk, F 2013, 'Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001)' 14th ASML Technology Conference 2013, Eindhoven, Netherlands, 20/06/13 - 20/06/13, pp. -.

Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001). / Liu, Feng; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik.

2013. - Poster session presented at 14th ASML Technology Conference 2013, Eindhoven, Netherlands.

Research output: Contribution to conferencePosterOther research output

TY - CONF

T1 - Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001)

AU - Liu, Feng

AU - Sturm, Jacobus Marinus

AU - Lee, Christopher James

AU - Bijkerk, Frederik

PY - 2013/6/20

Y1 - 2013/6/20

N2 - EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry and wet cleaning of the contaminated mirror surface, which must be performed outside the vacuum chamber. Thus, current cleaning techniques are not desirable for the sake of the productivity. Controlling these processes at multilayer mirror surfaces under EUV conditions can be very beneficial for ASML and its partners. Our goal is to understand these processes and apply newly obtained knowledge in maintaining mirror performance and extending its lifetime. Irradiations of EUV optics with 13.5 nm EUV photons, as well as the generated secondary electrons, drive chemical reactions in the presence of molecular and atomic species, in which the properties of the surface also play an important role. Our investigation employs temperature programmed desorption, and reflection-absorption infrared spectroscopy techniques in a UHV chamber to characterize the binding and chemical composition of molecular adlayers on a Ru(0001) surface. The photochemical reactions of water and deuterium water (D2O) were studied. We found that the dissociation of water on Ru is enhanced by EUV radiation, which leads to oxidation of the Ru surface. The oxidation of the Ru single crystal surface can be considered as the first step of oxidizing a Ru metal thin film, of which the next step is accumulation of oxygen and diffusion into the sub surface layers. The kinetics of oxidation is influenced by a number of factors. By comparing the reactions using water and D2O any isotope effects can be revealed. To understand the dependency on the morphology of the metal substrate, we carefully modify the surface structure by roughening the surface with the aid of ion bombardment. To mimic the polycrystalline nature of the Ru capped multilayer surface, we optimize the ion sputtering and annealing parameters to reproduce the spatial features we observe on Ru capped multilayers using AFM and STM. Furthermore, the dependence of the EUV induced reactions of water on the presence of co-adsorbed species as oxygen, hydrogen or carbon is investigated. This approach will lead to a set of reaction cross sections for EUV induced oxidation as a function of surface morphology, oxygen coverage, hydrogen coverage and carbon coverage.

AB - EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry and wet cleaning of the contaminated mirror surface, which must be performed outside the vacuum chamber. Thus, current cleaning techniques are not desirable for the sake of the productivity. Controlling these processes at multilayer mirror surfaces under EUV conditions can be very beneficial for ASML and its partners. Our goal is to understand these processes and apply newly obtained knowledge in maintaining mirror performance and extending its lifetime. Irradiations of EUV optics with 13.5 nm EUV photons, as well as the generated secondary electrons, drive chemical reactions in the presence of molecular and atomic species, in which the properties of the surface also play an important role. Our investigation employs temperature programmed desorption, and reflection-absorption infrared spectroscopy techniques in a UHV chamber to characterize the binding and chemical composition of molecular adlayers on a Ru(0001) surface. The photochemical reactions of water and deuterium water (D2O) were studied. We found that the dissociation of water on Ru is enhanced by EUV radiation, which leads to oxidation of the Ru surface. The oxidation of the Ru single crystal surface can be considered as the first step of oxidizing a Ru metal thin film, of which the next step is accumulation of oxygen and diffusion into the sub surface layers. The kinetics of oxidation is influenced by a number of factors. By comparing the reactions using water and D2O any isotope effects can be revealed. To understand the dependency on the morphology of the metal substrate, we carefully modify the surface structure by roughening the surface with the aid of ion bombardment. To mimic the polycrystalline nature of the Ru capped multilayer surface, we optimize the ion sputtering and annealing parameters to reproduce the spatial features we observe on Ru capped multilayers using AFM and STM. Furthermore, the dependence of the EUV induced reactions of water on the presence of co-adsorbed species as oxygen, hydrogen or carbon is investigated. This approach will lead to a set of reaction cross sections for EUV induced oxidation as a function of surface morphology, oxygen coverage, hydrogen coverage and carbon coverage.

KW - METIS-299675

M3 - Poster

SP - -

ER -

Liu F, Sturm JM, Lee CJ, Bijkerk F. Extreme Ultraviolet (EUV) induced surface chemistry on Ru(0001). 2013. Poster session presented at 14th ASML Technology Conference 2013, Eindhoven, Netherlands.