Abstract
This paper introduces a new learning algorithm for human activity recognition capable of simultaneous regression and classification. Building upon conditional restricted Boltzmann machines (CRBMs), Factored four way conditional restricted Boltzmann machines (FFW-CRBMs) incorporate a new label layer and four-way interactions among the neurons from the different layers. The additional layer gives the classification nodes a similar strong multiplicative effect compared to the other layers, and avoids that the classification neurons are overwhelmed by the (much larger set of) other neurons. This makes FFW-CRBMs capable of performing activity recognition, prediction and self auto evaluation of classification within one unified framework. As a second contribution, sequential Markov chain contrastive divergence (SMcCD) is introduced. SMcCD modifies Contrastive Divergence to compensate for the extra complexity of FFW-CRBMs during training. Two sets of experiments one on benchmark datasets and one a robotic platform for smart companions show the effectiveness of FFW-CRBMs.
Original language | English |
---|---|
Pages (from-to) | 100-108 |
Number of pages | 9 |
Journal | Pattern recognition letters |
Volume | 66 |
DOIs | |
Publication status | Published - 15 Nov 2015 |
Externally published | Yes |
Event | 21st International Conference on Pattern Recognition 2012 - Tsukuba International Congress Center, Tsukuba Science City, Japan Duration: 11 Nov 2012 → 15 Nov 2012 Conference number: 21 http://www.icpr2012.org/ |
Keywords
- Activity recognition
- Deep learning
- Restricted Boltzmann machines