TY - UNPB
T1 - Fault Trees from Data
T2 - Efficient Learning with an Evolutionary Algorithm
AU - Linard, Alexis
AU - Bucur, Doina
AU - Stoelinga, Mariëlle
PY - 2019
Y1 - 2019
N2 - Cyber-physical systems come with increasingly complex architectures and failure modes, which complicates the task of obtaining accurate system reliability models. At the same time, with the emergence of the (industrial) Internet-of-Things, systems are more and more often being monitored via advanced sensor systems. These sensors produce large amounts of data about the components' failure behaviour, and can, therefore, be fruitfully exploited to learn reliability models automatically. This paper presents an effective algorithm for learning a prominent class of reliability models, namely fault trees, from observational data. Our algorithm is evolutionary in nature; i.e., is an iterative, population-based, randomized search method among fault-tree structures that are increasingly more consistent with the observational data. We have evaluated our method on a large number of case studies, both on synthetic data, and industrial data. Our experiments show that our algorithm outperforms other methods and provides near-optimal results.
AB - Cyber-physical systems come with increasingly complex architectures and failure modes, which complicates the task of obtaining accurate system reliability models. At the same time, with the emergence of the (industrial) Internet-of-Things, systems are more and more often being monitored via advanced sensor systems. These sensors produce large amounts of data about the components' failure behaviour, and can, therefore, be fruitfully exploited to learn reliability models automatically. This paper presents an effective algorithm for learning a prominent class of reliability models, namely fault trees, from observational data. Our algorithm is evolutionary in nature; i.e., is an iterative, population-based, randomized search method among fault-tree structures that are increasingly more consistent with the observational data. We have evaluated our method on a large number of case studies, both on synthetic data, and industrial data. Our experiments show that our algorithm outperforms other methods and provides near-optimal results.
M3 - Working paper
BT - Fault Trees from Data
PB - ArXiv.org
ER -