Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

S.A. van Gool, J.A.M. Emons, Jeroen Christianus Hermanus Leijten, E. Decker, C. Sticht, J.C. van Houwelingen, J.J. Goeman, C. Kleijburg, S. Scherjon, N. Gretz, J.M. Wit, G. Rappold, Janine Nicole Post, Hermanus Bernardus Johannes Karperien

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)
67 Downloads (Pure)

Abstract

Abstract We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFb3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.
Original languageEnglish
Article numbere44561
Pages (from-to)1-11
Number of pages11
JournalPLoS ONE
Volume7
Issue number11
DOIs
Publication statusPublished - 2012

Keywords

  • METIS-293336
  • IR-83193

Fingerprint Dive into the research topics of 'Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage'. Together they form a unique fingerprint.

Cite this