Field estimation of fallen deadwood volume under different management approaches in two European protected forested areas

Research output: Contribution to journalArticleAcademicpeer-review

11 Downloads (Pure)


Fallen deadwood is essential for biodiversity and nutrient cycling in forest ecosystems. In modern forest management, there is growing interest in developing accurate and efficient methods for field estimation of deadwood volume due to its many benefits (e.g. carbon storage, habitat creation, erosion control). The most common methods for deadwood inventories are fixed-area sampling (FAS) and line-intersect sampling (LIS) methods. While the estimations of deadwood volume by LIS generally show results comparable to FAS estimations, active management (e.g. production forestry clearcutting, logging, and thinning activities) can impair LIS accuracy by changing local deadwood patterns. Yet, the comparison of LIS and FAS methods has typically focused on production forests where deadwood is limited and deadwood volumes are comparably low. In this study, we assessed fallen deadwood volume in two large national parks—one being a more actively managed landscape (including, e.g., selective thinning for maintaining cultural–historical values and enhancing recreational opportunities) with overall lower levels of fallen deadwood, and the other having a strict non-intervention approach with higher levels of deadwood. No significant differences between average FAS and LIS estimations of deadwood volumes were detected. Additional experimentations using simulated data under varied stand conditions confirmed these results. Although line-intersect sampling showed a slight overestimation and some variability at the individual plot level, it remains an efficient, time-saving field sampling method providing comparable results to the more laborious fixed-area sampling. Line-intersect sampling may be especially suitable for rapid field inventories where relative changes in deadwood volume rather than absolute deadwood volumes are of large interest. Due to its practicality, flexibility, and relative accuracy, line-intersect sampling may gain wider use in natural resource management to inform national park managers, foresters, and ecologists.
Original languageUndefined
Article numbercpae013
Pages (from-to)1-9
JournalInternational Journal of Forestry Research
Publication statusPublished - 5 Apr 2024


  • ITC-gold
  • UT-Gold-D

Cite this