Abstract
Self-standing and coated-on-glass films were prepared from polymer-inorganic ormosils, using the cationic polymer poly(methacrylamide propyl quaternarydimethyldodecyl bromide). The inorganic compound was grown in sol-gel reactions based on methyltriethoxysilane (MeTES), with or without addition of the titanium-precursor: tetraisopropyl orthotitanate. As evidenced by thermogravimetric analysis and differential scanning calorimetry data, the thermal properties of the films are highly dependent on the internal morphology. Inorganic granules with a TiO2 rich shell have a more polar surface, which stimulates stronger electrostatic interactions with the polymer, hence, a reduced mobility for the amino end and a smaller probability to have amino ends engaged in interactions at the surface of the granules. Coated-on-glass films drawn from pure cationic polymer suffer from partial dewetting. Topographic and force-versus-distance recordings using atomic force microscopy showed a change in the energy balance and no dewetting regions were encountered for polymer/MeTES based composites. However, because of nongrafted polymer, these films are not immune at washing with water/ acetone. Explorations of antibacterial activity against the gram-negative bacteria, Pseudomonas aeruginosa, were done using ormosil films with alkoxysilanes combinations.
Original language | Undefined |
---|---|
Pages (from-to) | 2625-2633 |
Number of pages | 9 |
Journal | Journal of applied polymer science |
Volume | 106 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2007 |
Keywords
- Atomic force microscopy (AFM)
- Morphology
- Micro-structure
- IR-72218
- inorganic materials
- METIS-241009
- Thermal properties