First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau

Xiaojing Bai, Binbin He, Xing Li, Jiangyuan Zeng, Xin Wang, Zuoliang Wang, Yijian Zeng, Z. Su

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)
68 Downloads (Pure)

Abstract

The spatiotemporal distribution of soil moisture over the Tibetan Plateau is important for understanding the regional water cycle and climate change. In this paper, the surface soil moisture in the northeastern Tibetan Plateau is estimated from time-series VV-polarized Sentinel-1A observations by coupling the water cloud model (WCM) and the advanced integral equation model (AIEM). The vegetation indicator in the WCM is represented by the leaf area index (LAI), which is smoothed and interpolated from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LAI eight-day products. The AIEM requires accurate roughness parameters, which are parameterized by the effective roughness parameters. The first halves of the Sentinel-1A observations from October 2014 to May 2016 are adopted for the model calibration. The calibration results show that the backscattering coefficient (σ°) simulated from the coupled model are consistent with those of the Sentinel-1A with integrated Pearson’s correlation coefficients R of 0.80 and 0.92 for the ascending and descending data, respectively. The variability of soil moisture is correctly modeled by the coupled model. Based on the calibrated model, the soil moisture is retrieved using a look-up table method. The results show that the trends of the in situ soil moisture are effectively captured by the retrieved soil moisture with an integrated R of 0.60 and 0.82 for the ascending and descending data, respectively. The integrated bias, mean absolute error, and root mean square error are 0.006, 0.048, and 0.073 m3/m3 for the ascending data, and are 0.012, 0.026, and 0.055 m3/m3 for the descending data, respectively. Discussions of the effective roughness parameters and uncertainties in the LAI demonstrate the importance of accurate parameterizations of the surface roughness parameters and vegetation for the soil moisture retrieval. These results demonstrate the capability and reliability of Sentinel-1A data for estimating the soil moisture over the Tibetan Plateau. It is expected that our results can contribute to developing operational methods for soil moisture retrieval using the Sentinel-1A and Sentinel-1B satellites.
Original languageEnglish
Article number714
Number of pages20
JournalRemote sensing
Volume9
Issue number7
DOIs
Publication statusPublished - 2017

Keywords

  • ITC-ISI-JOURNAL-ARTICLE
  • ITC-GOLD

Fingerprint Dive into the research topics of 'First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau'. Together they form a unique fingerprint.

  • Cite this