TY - JOUR
T1 - Flood Modelling of the Zhabay River Basin Under Climate Change Conditions
AU - Nurbatsina, Aliya
AU - Salavatova, Zhanat
AU - Tursunova, Aisulu
AU - Didovets, Iulii
AU - Huthoff, Fredrik
AU - Rodrigo-Clavero, María-Elena
AU - Rodrigo-Ilarri, Javier
PY - 2025/2/15
Y1 - 2025/2/15
N2 - Flood modelling in snow-fed river basins is critical for understanding the impacts of climate change on hydrological extremes. The Zhabay River in northern Kazakhstan exemplifies a basin highly vulnerable to seasonal floods, which pose significant risks to infrastructure, livelihoods, and water resource management. Traditional flood forecasting in Central Asia still relies on statistical models developed during the Soviet era, which are limited in their ability to incorporate non-stationary climate and anthropogenic influences. This study addresses this gap by applying the Soil and Water Integrated Model (SWIM) to project climate-driven changes in the hydrological regime of the Zhabay River. The study employs a process-based, high-resolution hydrological model to simulate flood dynamics under future climate conditions. Historical hydrometeorological data were used to calibrate and validate the model at the Atbasar gauge station. Future flood scenarios were simulated using bias-corrected outputs from an ensemble of General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 for the periods 2011–2040, 2041–2070, and 2071–2099. This approach enables the assessment of seasonal and interannual variability in flood magnitudes, peak discharges, and their potential recurrence intervals. Findings indicate a substantial increase in peak spring floods, with projected discharge nearly doubling by mid-century under both climate scenarios. The study reveals a 1.8-fold increase in peak discharge between 2010 and 2040, and a twofold increase from 2041 to 2070. Under the RCP 4.5 scenario, extreme flood events exceeding a 100-year return period (2000 m
3/s) are expected to become more frequent, whereas the RCP 8.5 scenario suggests a stabilization of extreme event occurrences beyond 2071. These findings underscore the growing flood risk in the region and highlight the necessity for adaptive water resource management strategies. This research contributes to the advancement of climate-resilient flood forecasting in Central Asian river basins. The integration of process-based hydrological modelling with climate projections provides a more robust framework for flood risk assessment and early warning system development. The outcomes of this study offer crucial insights for policymakers, hydrologists, and disaster management agencies in mitigating the adverse effects of climate-induced hydrological extremes in Kazakhstan.
AB - Flood modelling in snow-fed river basins is critical for understanding the impacts of climate change on hydrological extremes. The Zhabay River in northern Kazakhstan exemplifies a basin highly vulnerable to seasonal floods, which pose significant risks to infrastructure, livelihoods, and water resource management. Traditional flood forecasting in Central Asia still relies on statistical models developed during the Soviet era, which are limited in their ability to incorporate non-stationary climate and anthropogenic influences. This study addresses this gap by applying the Soil and Water Integrated Model (SWIM) to project climate-driven changes in the hydrological regime of the Zhabay River. The study employs a process-based, high-resolution hydrological model to simulate flood dynamics under future climate conditions. Historical hydrometeorological data were used to calibrate and validate the model at the Atbasar gauge station. Future flood scenarios were simulated using bias-corrected outputs from an ensemble of General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 for the periods 2011–2040, 2041–2070, and 2071–2099. This approach enables the assessment of seasonal and interannual variability in flood magnitudes, peak discharges, and their potential recurrence intervals. Findings indicate a substantial increase in peak spring floods, with projected discharge nearly doubling by mid-century under both climate scenarios. The study reveals a 1.8-fold increase in peak discharge between 2010 and 2040, and a twofold increase from 2041 to 2070. Under the RCP 4.5 scenario, extreme flood events exceeding a 100-year return period (2000 m
3/s) are expected to become more frequent, whereas the RCP 8.5 scenario suggests a stabilization of extreme event occurrences beyond 2071. These findings underscore the growing flood risk in the region and highlight the necessity for adaptive water resource management strategies. This research contributes to the advancement of climate-resilient flood forecasting in Central Asian river basins. The integration of process-based hydrological modelling with climate projections provides a more robust framework for flood risk assessment and early warning system development. The outcomes of this study offer crucial insights for policymakers, hydrologists, and disaster management agencies in mitigating the adverse effects of climate-induced hydrological extremes in Kazakhstan.
KW - climate change
KW - floods
KW - hydrological modelling
KW - Kazakhstan
KW - SWIM model
KW - Zhabay River
UR - http://www.scopus.com/inward/record.url?scp=85218872484&partnerID=8YFLogxK
U2 - 10.3390/hydrology12020035
DO - 10.3390/hydrology12020035
M3 - Article
SN - 2306-5338
VL - 12
JO - Hydrology
JF - Hydrology
IS - 2
M1 - 35
ER -