TY - JOUR
T1 - Fluid–particle interaction from lattice Boltzmann simulations for flow through polydisperse random arrays of spheres
AU - Sarkar, S.
AU - van der Hoef, M.A.
AU - Kuipers, J.A.M.
PY - 2009
Y1 - 2009
N2 - Fluid–solid drag force correlations, such as the Ergun relation, are widely used in many areas of chemical engineering. In many practical applications, the solid phase consist of an assembly of spheres which are, more often than not, polydisperse. In this paper we report on a study of the fluid–particle interaction by fully resolved DNS-type simulations (lattice Boltzmann) of flow through polydisperse random arrays of spheres, both for log-normal and Gaussian size distributions. In a recent paper [Van der Hoef, M.A., Beetstra, R., Kuipers, J.A.M., 2005. Lattice Boltzmann simulations of low Reynolds number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233] we have shown that a correction factor should be applied to the monodisperse drag force relations, when used for bidisperse systems. On the basis of the data reported in this paper, we conclude that the correction factor also applies to general polydisperse systems
AB - Fluid–solid drag force correlations, such as the Ergun relation, are widely used in many areas of chemical engineering. In many practical applications, the solid phase consist of an assembly of spheres which are, more often than not, polydisperse. In this paper we report on a study of the fluid–particle interaction by fully resolved DNS-type simulations (lattice Boltzmann) of flow through polydisperse random arrays of spheres, both for log-normal and Gaussian size distributions. In a recent paper [Van der Hoef, M.A., Beetstra, R., Kuipers, J.A.M., 2005. Lattice Boltzmann simulations of low Reynolds number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233] we have shown that a correction factor should be applied to the monodisperse drag force relations, when used for bidisperse systems. On the basis of the data reported in this paper, we conclude that the correction factor also applies to general polydisperse systems
U2 - 10.1016/j.ces.2009.02.045
DO - 10.1016/j.ces.2009.02.045
M3 - Article
VL - 64
SP - 2683
EP - 2691
JO - Chemical engineering science
JF - Chemical engineering science
SN - 0009-2509
IS - 11
ER -