TY - JOUR
T1 - Friction Stir Processed AA5754-Al2O3 Nanocomposite: A Study on Tribological Characteristics
AU - Rohim, M.N.M.
AU - Abdullah, M.E.
AU - Mohammed, M.M.
AU - Kubit, A.
AU - Aghajani Derazkola, H.
PY - 2024/6/7
Y1 - 2024/6/7
N2 - This study investigates the tribological properties of an AA 5754 aluminum alloy composite reinforced with the nanopowder of Al2O3, fabricated using the friction stir processing (FSP) technique with blind holes. The aim is to analyze the effects of varying the tool rotational speed (rpm) and blind hole diameter on the wear and friction behavior of the produced composite. A pin-on disk test is conducted under dry conditions and room temperature to assess the tribological properties against steel. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) is employed to examine the worn and wear surfaces of the produced composites post test. The results indicate that increasing the applied load results in a decrease in the coefficient of friction (COF), with values ranging from 0.775 to 0.852 for 10 N and 0.607 to 0.652 for 20 N. Moreover, the wear rate diminishes with higher Al2O3 content and optimal FSP tool rotation (1280 rpm). Hardness analysis reveals variations between 33–42 HV and 35–39 HV, influenced by nanoparticle distribution. The composite demonstrates superior wear resistance compared to raw AA5754 aluminum due to its reinforced nature. However, high FSP tool rotation rates lead to abrasive wear and surface cracks. These findings offer insights into optimizing FSP parameters to enhance the tribological performance of nano-reinforced aluminum alloys.
AB - This study investigates the tribological properties of an AA 5754 aluminum alloy composite reinforced with the nanopowder of Al2O3, fabricated using the friction stir processing (FSP) technique with blind holes. The aim is to analyze the effects of varying the tool rotational speed (rpm) and blind hole diameter on the wear and friction behavior of the produced composite. A pin-on disk test is conducted under dry conditions and room temperature to assess the tribological properties against steel. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) is employed to examine the worn and wear surfaces of the produced composites post test. The results indicate that increasing the applied load results in a decrease in the coefficient of friction (COF), with values ranging from 0.775 to 0.852 for 10 N and 0.607 to 0.652 for 20 N. Moreover, the wear rate diminishes with higher Al2O3 content and optimal FSP tool rotation (1280 rpm). Hardness analysis reveals variations between 33–42 HV and 35–39 HV, influenced by nanoparticle distribution. The composite demonstrates superior wear resistance compared to raw AA5754 aluminum due to its reinforced nature. However, high FSP tool rotation rates lead to abrasive wear and surface cracks. These findings offer insights into optimizing FSP parameters to enhance the tribological performance of nano-reinforced aluminum alloys.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85197123468&partnerID=MN8TOARS
U2 - 10.3390/jcs8060216
DO - 10.3390/jcs8060216
M3 - Article
SN - 2504-477X
VL - 8
JO - Journal of Composites Science
JF - Journal of Composites Science
IS - 6
M1 - 216
ER -