Abstract
We present an efficient procedure to classify airborne laser scanner data into ground and non-ground. The classification is performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on AHN-3 data resulting in 4.02% of total error, 2.15% of type I error and 6.14% of type II error. We show that this method can be extended to further classify the point cloud into buildings and vegetation.
Original language | English |
---|---|
Pages | 5 |
Number of pages | 1 |
Publication status | Published - 28 Nov 2018 |
Event | NCG symposium 2018 - Wageningen university, Wageningen, Netherlands Duration: 29 Nov 2018 → 29 Nov 2018 https://ncgeo.nl/index.php/nl/actueel/nieuws/item/2781-programma-ncg-symposium-2018 |
Conference
Conference | NCG symposium 2018 |
---|---|
Country/Territory | Netherlands |
City | Wageningen |
Period | 29/11/18 → 29/11/18 |
Internet address |